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SUNARY

This document represents the final report under Contract No. F49620-83-K-

qi4 0032-POO001 from the Air Force Office of Scientific Research to Virginia

Polytechnic Institute and State University. To accommodate the fact that the

Principal Investigator (J.L. Junkins) accepted a position at Texas A&M

University, effective September 1, 1985, the effort was performed at Texas A&M

under Sub-Contract No. 4174-352142-1 from Virginia Polytechnic Institute.

Significant progress is reported on methodology to optimize open and

closed loop control laws for flexible vehicles. Also a new method for

simutaneous structure/controller design optimization is reported.

DISCUSSION OF RESULTS

Since the effort in this contract resulted in ten manuscripts which

document the results in detail, we append here to these manuscripts and

,4 provide below a brief statement of the main results contained in these papers.

Nonlinear Feedback Control

In Attachment 1, we present a generalization of classical linear-

quadratic regulator theory to accommodate polynominal nonlinearities in

dynamical models of the form

x a x+c xxC-*
i ijxj ijkXjxk +  + biju j  (i=1,2,...,n) (1)

where xi are state variables, ui are control variables, and summation over -. .......

repeated indices is implied. We consider polynomial nonlinear feedback of the

form
, dodes

Dist ' ,d / or

2
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ui= -(d ixj+ eijkXjXk+ fijklxjxkxl+...) (i=l,..,m) (2)

For the case of a quadratic performance index, we show in Attachment No. 1

that the gains satisfy a sequence of differential equations. The linear gains

(dij) are determined by solving the usual Riccati equation, whereas the

quadratic gains (eijk), cubic gains (fijkl) and all higher order gains satisfy

linear differential equations. Numerical implementations have been carried

out and the validity of the formulation has been established. Several

. ~ applications are described in Attachment 1 which shows that the nonlinear

feedback terms are significant and constructive in designing optimal nonlinear

controls. In all cases studied, except one, convergence has been reliably

achieved. This convergence failure was found to depend upon the weights

selected in the performance index and was easily eliminated. More generally,

conditions which guarantee convergence remain a difficult unresolved issue

- . which requires further research. The most significant practical difficulty

associated with this approach lies in the system specific algebra required to

derive the differential equations satisfied by the higher order gains. We are

investigating the use of algebraic manipulators (MACSYMA and SMP) to automate

the derivation and coding of these equations.

In Attachment 2, we extend these ideas by using canonical state variables

(the euler parameters and the corresponding conjugate momentum variables).

This formulation is very elegant for spacecraft attitude maneuvers. While we

clearly establish the validity of the formulations (through analytical and

numerical comparisons to the results in Attachment 1), the advantages of this

canonical variable approach have not been established. Also, we consider in

Attachment 2 a Liapunov approach to design of nonlinear feedback control;

these results look very promising, especially for systems of moderate

dimensions.
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Nonlinear Open Loop Control

In Attachments 3,4,5, we present a novel method for computing nonlinear

open loop spacecraft maneuvers by a perturbation method. As with the problems

addressed in Attachments I and 2, we consider only polynomial

. nonlinearities. We establish a quasi-analytical, non-iterative method (based

upon asymptotic expansions) which we demonstrate to work well on several

problems. The method presented is attractive because it appears suitable for

semi-automation and also because it has worked well on most examples tried to

date.

Structural Identification

In Attachment 6, we present a time-domain method for structural

identification which combines both free and forced response measurements to

determine system mass and stiffness estimates. The method is shown to work

well for "academic" structures of moderate dimensionality. However

difficulties associated with lack of uniqueness, rank deficiency and data

* requirements are noted which limit the practical utility of this approach.

Recent research has established a new frequency domain approach which promises

to circumvent many (if not most) of these difficulties. The method is based

upon parameterization of the frequency response function in terms of physical

system parameters and recovering estimates of these parameters to fit the

frequency response in a least square sense. Rank deficiencies are addressed

using a singular value decomposition algorithm. The details of this method

will be presented in N.G. Creamer's forthcoming dissertation, including

applications to structures with linear viscoelastic models.
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Structure/Controller Optimization

In Attachments 7 and 8, we present homotopy methods for simultaneous

koptimization of structural design parameters, sensor/actuator locations, and

the feedback gains in an output feedback control law. The algorithm of

Attachment 7 is based upon a "minimum modification" strategy which is shown

convergent with as many as 60 design variables. The algorithm of Attachment 8

is based upon sequential linear programming. This approach is especially

well-suited to high dimensioned problems involving a large number of

inequality constraints. In Attachment 8, we consider a simple example with

eigenvalue placement constraints and two alternative optimization criteria

(minimum mass, minimum closed-loop eigenvalue sensitivity); both structure and

control parameters are simultaneously iterated. Several variations in problem

statement and starting iterative support the validity and usefulness of both

the minimum correction and sequential linear programming homotopy algorithms.

In Attachments 9 and 10, we extend the methodology of Attachments 7 and 8

to consider tuning of optimal quadratic regulators. In Attachment 10, we

establish that the weight matrices selected for the usual quadratic

performance index have a strong impact upon eigenvalue placement and other

stability/performance robustness measures. We also establish an algorithm

which we have found useful for "optimal tuning" of the weight matrices; we

have successfully iterated as many as 150 weight elements to optimize

eigenvalue placement and robustness indices.

The most significant unifying feature of the methods in attachments 7-10

is the use of homotopy methods. This approach is most important in practical

.situations for which the initially stated contraints have no feasible

solution. The homotopy method gradually imposes constraints, and as a

consequence, convergence failures are informative. Conflicting and active

5



constraints can be easily identified, leading to "least compromised" revisions

of the problem statement. This feature appears to be a key ingredient in

developing practical optimization strategies for high-dimensioned systems.

Student Support

The four students supported by this contract are nearing completion of

their Ph.D. dissertations. They are as follows:

(1) R.C. Thompson, (2) K.B. Lim, (3) D.W. Rew, and (4) N.G. Creamer.

These four students, the principal investigator, and the two academic

institutions have certainly benefited significantly from this research

project. The fruits of the research are most significant and we trust will be

the basis for many future developments.
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Attachment #1

Optimal Nonlinear Feedack Control
for Spacecraft Attitude Maneuvers

C.K. Carrington* and J.L. Junkinst
Virginia Polytechnic Institute and State University. Blacksburg. Virginia

Polynomial feedback controls for largeagk, noelinear spacecraft mitd. umauvers are developedi. A live-
body conflguratioa conustnlg of an asymmetric spacecraft and four re ctio wheels Is considered. Attention Is
retricted to the momentum Ilmafer clm of Internal coialo" torques; this, In coajunction with the choke of
EWaer parameters a attitude coo.4inates, permits several Important order reduction simplifications. Three
numerical examples iwe includled to Eustrate applications of she concepts presented.

Introduction The Hamiltonian for this system is
R APID large-angle attitude maneuvers have become in-

creasingly important to the success of many current and 3C - A I quxjxj + rjuU)l + X,;,j (3)
future spacecraft missions. These maneuvers are characterized
by nonlinear behavior, however, resulting in a control prob- where it is understood that I, is symbolic for the right-hand
lem that is likewise nonlinear. One approach to feedback con- side of Eq. (1). The necessary conditions for a minimum pro-
trol of nonlinear motion is "gain scheduling" in which the vide the state equation, Eq. (1),

- control history is divided into segments, each determined by
> its own set of linear gains. A more attractive approach is con- 8(
2- trol of the entire nonlinear maneuver by' a single set of gains. X = a(4)

For the latter approach, a method is presented whereby the
optimal nonlinear control problem is solved in polynomial and the costate equation
feedback form and a suboptimal control law is determined by
truncation. Currently there are two approaches used to deter- a3a
mine the polynomial coefficients for the control. One is to ex- , x, (5)
pand the coast-to-go functional as a polynomial in the states

. and then recursively solve the Hamilton-Jacobi-Bellman equa- For unbounded control
lion, as discussed by Willensteini Dabbous and Ahmed.' and
Dwyer and Sena.' In the method used here, 4 the control itself 83C
is expanded as a polynomial and the coefficients determined - 0 (6)
recursively from the costate equations.

General Formulation which implies

Polynomial state equations may be written in indicial nota- u, -r- bkjX (7)
,7 tion as

i, = atXj + cxjxAx +... + buj (i=2....n) (I) where rj "I represents the elements of the matrix inverse of r,.

By assuming the costates can be expressed as a polynomial in
where x, are the states and u, the controls to be determined, the states, as in Ref. 4,
Consider the optimal control problem of finding a feedback
control law that brings the states to zero while minimizing a X, = kix j + d,kxxk +... (8)
quadratic performance index

I Ia nonlinear feedback control law is determined in which k#(t)
TJ ,02 [qx,x +ru,u, dr (2) ane duk (t) are the control gains sought. By substituting Eq.

(8) into Eq. (5) and carrying out the ensuing algebra, we are

led to n homogeneous polynomial equations of the form

[a-x, + []xx, + . 0 (9)

Presented as Paper 83-2230 at the AIAA Guidance and Control where

Conference. Gatlinburg. TN, Aug. 15-17, 1983; submitted Sept. 30.
1983; revision submitted June 18, 1985. Copyright © American In-
stitute of Aeronautics and Astronautics. Inc., 1953. All rights [a] -function (A.BQ.R.K.K)
reserved. 10 function (A.B.C.RK.D)

'Graduate Research Assistant; presently Assistant Professor of
Mechanical Engineering. University of South Carolina. Columbia,
SC. Student Member AIAA. and K and D are arrays whose elements are the gains k. and

tProfesor. Engineering Science and Mechanics. Associate Fellow du. Since Eq. (9) must hold at every point in the state space, it
AIAA, is concluded that the functions in brackets must vanish in-
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dependently, so wc obtain Since for n states there are n2 (n+ 1)/2 equations in Eq.
(12), we do not include the algebra of the system considered

((A.B. Q.R,Jk.K) I = 0 (10) here. The emphasis of this discussion is the following
generalization: After solving the Riccati equation for the

I 3(A.B.C,R.K.DD) ] =0 (II) linear gains, one is led to sets of linear differential equations,
of the functional form shown in Eq. (12), that can be solved

Equation (10) is a matrix differential equation determining the sequentially to obtain the quadratic gains, the cubic gains, and
linear feedback gains; upon carrying through the details, we so on, up to iny desired order. The differential equations for
find that the scalar equations of Eq. (10) are precisely the the gains of each order depend upon the lower order gains.
elements of the matrix Riccati equation which generates the
optimal feedback control if all nonlinear terms in the state Scalar Example
equation are absent. The solution for the matrix Riccati equa- Consider the optimal control problem of minimizing the
tion can be determined by Potter5 or Turner's 6 method, in following performance index:
which an associated eigenvalue problem is solved and matrix
exponentials are used. 1 i I +

The quadratic feedback gains are determined by Eq. (II), =- +  d()
which can be rearranged into a set of linear differential equa- 2 t3
tions of the form subject ot the state equation

d, - [nid, + [y (12) x -X+tA + U (16)

where The costate equation is

[ill =function (A,B,C,R,K) 1) = -x+ -2gx (17)

[1yI = function (AB,C,RK) (13) and the control is
,, u -7 (18)

Upon solving the Riccati eqaution for the linear gains k,, (f),
Eq. (12) provides nonautonomous, nonhomogeneous, but
linear equations that determine the quadratic gains dk (I). Table r Scalar example
For the steady-state case, Eqs. (10) and (11) can be solved performance indices
algebraically for the constant feedback gains subject to Feedback Performance

order index
k =,,=.k = 0 (14)

1 "4314.8
The k,., are solutions of the algebraic Riccati equation, and 2 3796.4
the d,. are obtained by setting dv, =0 in Eq. (12) and invert- 3 3725.5

ing the linear algebraic system. In the numerical examples con- 4 3717.2

sidered herein, attention is restricted to the constant gain case. 5 3716.8

113 3a
i' '. Fig. 2 Momentum reference frame.

STATE VARIABLE X -

so-'

I..n.
h-h. ' H .* -e 2

TIME (SEC)

l " CONTROL TOROUE

skew

ItI

.TIME (SEC)

-II , * * . .-. I

Fig. I Scalar enample: 1. linear feedback; 2, linear plus quadratic 61
feedback; 3. linear through cubic feedback. Fig. 3 NASA standard four action wheel attitude cestrol system.
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Assuming the costate as a polynomial in state x, Substitution of the solution for z,(r) into Eqs. (21) and then
Eq. (19) yields a polynomial feedback control law with time-

X = k x + k x2 + k 4 ... (19) dependent coefficients.
A numerical example for the scalar case is included, using

then the coefficient differential equations corresponding to = 0.01 and if= 5 s. The performance indices are given in
Eqs. (10) and (II) and higher order terms are Table I, and the state variable and control histories are given

in Fig. I. Curves corresponding to fourth- and fifth-order
* 2k, +I k- -=0 feedback are coincident with third order and, hence, are not

plotted. Fifth-order polynomial feedback essentially has con-
kt -3(k, + I)k2 - - 3kle verged to the optimal control for this scalar problem.

A system for attitude control of a spacecraft with four reac-
k.-4(k,+I)k3=2kJ-0 2f tion wheels is now examined.

k4 - 5(k, + !)k 4 = Sk2k3 - 5k 3t Spacecraft Orientation
Euler Parameters

- 61k,+ )ks6kk 4 + 3k- 6k A spacecraft body-fixed reference frame 1I1 is related to an
inertial frame I AlI by the direction cosine matrix (C(0S1 ,

191= (c )Il il (23)
-{n+ 1) (k, + I)k= (n+ I) (k2k._, + k3k_ 2 +... where [C(O) I is defined in terms of the four Euler parameters

(0  .01 6,0).1 These attitude variables are related to the+ k./2k/2 i-k._It )for n even body-frame components of the spacecraft angular velocity W
- (n + I) (k, + I )k, = (n + ) I k2k.- I + k3k.-z + by the following kinematic differential equations:

(Rt- 1)/2k(n+3)/2 + 1ki il2-kn-lfl fornodd (20) $0 =- 1/2 1 W 16 2 W2 + 93 W 3) 01 / ( 0 -1- 03 -2+ 02W 3)

Making the change of variable from time i to time-to-go 02 = '/z(063 I + 0OW2- 0 1 ) , i 3= - '/ ( 0zo - 0  
W2 

0 W 3)
= tf-t and assuming a solution of the form (4

klg=kss+zi with
d

k__== .z 2  d

k3 14Momentum Reference Frame

In addition to using an arbitrary, general inertial frame
Iil, a special inertial angular momentum frame (i is in-

(21) troduced where h2 is aligned with the system angular momen-k, =Zl -
tn

+ i4 (21) tum H, as discussed by Vadali and Junkins' and Kraige and
- Junkins.'° The other two unit vectors can be defined by the

_,where kiss is the steady-state solution for ki, we obtain the directions oil and Ai3 assume after A2 is rotated to coincide with
-- following equations: H (see Fig. 2). This reference frame can be considered inertial

if the external torques are negligible during the maneuver and
dz only internal torques are present. As is shown below, in-
d7- 2 (1 +kss)zl troducing this frame allows a use of the angular momentum

integral to reduce the number of state variables.
~d- 2 _ ( ,sz (ls3+z The orientation of 161 with respect to the momentumd- I frame I1l is given by the projection

dz3, I-Z 1=[C()] Ihl (25)- -41 + k1s)z = 4z, z -2z 2 z]
d 4=4 -where the 3 x 3 direction cosine matrix [C) is a function of

four variable Euler parameters (60,61,62,61). The inertial
frame (Al is projected onto (i by

dz (n+IXI +kss)Z, =(n+ I)lz _i,-zl-n(z 2 z._, Dil I [C01) ] h1 (26)
d7 where (% 0 11 0t2 ,04 ) are constant Euler parameters since both

+zjz.-+ +Z(,2+,))l for n even (Al and Il are inertial. Using the inertial frame Isl com-
ponents of the system angular momentumdz,(27"7 (n + 1)(I + kH=s)z. - In+ 1)1Z14- H,,A1 + H4,iA + HnA 3  (27)

+I Z 2  the constant cr, Euler parameters can be defined as+ Z)ZR _ 2 + ... + Z( -/z(n 31/2l + (R,, + "zZ ,,2) for n odd

(22)

The variable changes of Eqs. (21) are generalizations of and £0 [2HJ
were motivated by Refs. 6 and 7.

Equations (22) are easily solved, subject to specification of H rH H.,
the boundary conditions; e.g.. k, (7) =... =k 2 (i)=Oat T=0. , - ,2H(H'-.,+ H ]

10



"V2 = 0 The reaction wheel equations or motion are

c = H, ifH- -) (28) lJ](1 + j] [ 6  =u (36)
2where the four components of the control vector u are the ax-

The 6, Euler parameters are then related to the a, parameters ial torques applied to their respective wheels by the motors. To
by the bilinear, orthogonal equation eliminate the wheel angular velocities 0 from the spacecraft

equations of motion, Eq. (36) is multiplied by [] r and then
60, C( - 011 - C. - C1 3 0 substituted into Eq. (34) to obtain

.6" 1 , CO  - or) 2 01 (2 ) -- [G ) I wl + [ el ru l 137)11 , =(29)
62 z 3 -C l 16 where [0] [i._.-CrJCI-1 a constant matrix. Implicit inL3 C1 - C L J Eq. (37) is the substitution of Eqs. (32); thus, ,=f(w,&,u).63 -Notice the pleasing truth that rest-to-rest maneuvers

and are related to the body-frame components of w by the dif- (characterized by H = 0) remove all of the gyroscopic terms in
ferential equations Eq. (37). It is evident that, for this class of maneuvers, angular

velocity control is near trivial and attitude control is nonlinear
S= - 'a (6$,l + 2 + 63w3) only because of kinematic nonlinearities.

The three equations of motion in Eq. (37) and the four at-
1 -= / (6 0WI - 6 3W2 + 62(03) titude equations in Eq. (30) will be used to determine the state

equations.

'2 = '/ (53W , + 6o(02- )
Optimal Feedback Control Formulation

63 = - '(6 2W, -6 , Wz - 6W 3) (30) State Equations
It can be shown from Eq. (25) and using the algebraic expres- To obtain state equations of the form
sions for [c(6)] from Ref. 8 or 10 that i=Ax+F(x) +Bu (38)

=2 ( 62 + 62 _ 6)) 2  in which A is a constant coefficient matrix and F(x) a vector
-+ 2 (6263 - 6061 )/ (31) function containing the nonlinear terms, let the state variables
(2- ( be the spacecraft angular velocities w, and Euler parameter

.-.. s th bod-frme ompnent oftheystm anula moen- differences 5,; thus, the seven-clement state vector is
so the body-frame components of the system angular momen-

- ..- turn can now be written from H=Hh2 as

H, = (6162 +60 63 )H where =,-6j,(t,) (1i=0,1.2,3) (40)

These new state variables introduce linear terms into the
H 3 = 2(6263 - 6 )H (32) dynamic and kinematic equations, Eqs. (37) and (30),

Thus. w e xrespectively.Thus we have an explicit relationship to eliminate H, in terms The elements of the A matrix for the linear part of the state
of 6,. equations are found to be

Spacecraft and Reaction Wheel Dynamics a,, 0 h 1
-. An arbitrary asymmetric spacecraft with four reaction

wheels in NASA standard configuration is considered (see Fig. a13 = g/ _- g,.2H/ 021 = g22143 _923M
-. 3). The system angular momentum H is the sum of the

spacecraft and wheel angular momenta; the body components a22 -g2314 -g 2tH3 023 =9 21H -g22H'
of H and w are related by

..,H= [I-], + [C)1 rbIJI (33) 13 92*_3H 72 93Ht-914
-"" °' a3  =g 3 12 -g 3 3 Hi a32  -6 (f /

where [1] is the system inertia matrix with respect to the

body frame Ib1, f a vector of the four-wheel angular 02= 22(1t)/2 a 3 =-6,(f)/2
velocities, and (J] the wheel axial moment of inertia matrix
defined by [JJ =diag IJ,l, i= 1,2,3,4. [e] is a4x3 matrix a,,=6o(t)/2 752 =- 6 3(f)/ 2

whose rows are the three orthogonal body-frame components
of four unit vectors along the wheel spin axes. a5 = 62 (if)/2 a4t = 6, (if)/2

-."- Assuming negligible external torques, the time rate of
change of the angular momentum is zero, and thus the a= 6 o(tf)/2 a3=- 61(t1)/2
Eulerian equation of motion is obtained

a,, = - 6, (t)./2 072= 6 (if)12" iH= [l' + I ' T[j16 
+ (,Z)]H 0 (34)aia

a.,) 6
0 (if )/

2

where
-,0 - w a=0(i l.7; j=4.....7) (41)

W34, 0 -W where H' is Eq. (32) evaluated at 6,(r,) and g, are the

2 0) elements of matrix IGI defined after Eq. (37). Notice that ev

~11
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z is a 3 x I vector containing the orthogonal components of the
jare explicit functions of the specific terminal state 8, (if) and vector sum of the motor torques. J, penalizes the four motor

the magnitude of the system angular momentum H. B is a torques and J2 penalizes their projections on the principal
7 x4 matrix axes.

-roir~*vIn the numerical examples, performance index J, is used for
A L- -- 1 (42) maneuvers involving all four wheels. Performance index J2

0. o may also be used with four wheels, but the wheel torques are
not unique, as shown below. All examples utilizing three

and the vector F(x) contains quadratic and cubic terms in x,. wheels use J1, in which the 4 x 3 matrix it)~ in Eq. (45) is
replaced by its 3 x 3 nonzero submatrix. Q is a positive

P erfran 110 semidefinite weighting matrix, and R and W are identity
Two quadratic performance indices are considered matrices for the examples considered.

J _Li If1xrg~urR~dt 43) Feedback Control
2 to For the performance index in Eq. (43), the optimal controland J~+~ITQX+URM~d (43

(46)

4- ta lrQx + mWm Idt (U) where B, is the B matrix of Eq. (42). The analogous develop-
2 t ment frthe performance index of Eq. (44) uses the state

where equations in the form

M.JJR(45) ii Ax +F(a) +82 m (47)

12
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ac-am Table 2 Momens o Imeflia.
kg... 2

1, 86.215
•2 85.070

a 13 113.565
is 0.05

tzI1 (s~cj Table 3 [mis d wel eomet Sc mtric

s 1am 1n" 840 87.212 -0.2237 -0.22371

l'J - -0.2237 $6.067 -0.2237

- 0.2237 - 0.2237 114.562

I 0 1
lei] - o 0

0 .0 I

-0.i /3 0-13 4113

TINE CSCC

-40.118 L-: A....:
9 gol Is@ too 240

Table 4 Case 1: Boadasry conditions

Initial states Final states
a1 •0.0001 0.0

0 "" 2 0.0001 0.0
0.0001 0.0

--a/2 v/2
... 0. 9 - r/3 r/3

" - ir14 r14

6 60 -0.54611 -0.30257
TIME a 0.47921 0.13976%,._T I's c), 62  0.6768"7 0.81747

@8. as... ... .. . 63 0.11820 046974
Ig. :ontl Itoes. -0.33141 0.33141

Figl. 6 Case !: control torques. 0 0.46194 0.46194
02 -0.19134 0.19134

0.80010 0.80010
where 8 2 is a 7 x 3 matrix 0, 0.0 - a

02  0.0 -5
U3 0.0

B2 -(8] 04 0.0 -8

B2  (48) Seifilc final boundary condlions for 0, (i) need not be

formally enforced; these are determined implicitly because
The optimal control m for 12 is angular momentum is conserved; i.e., for H = const and

Tc(fi) specified. fu) is implicitly constrained by Eq. (33).

m= W- 'B. (49)

and the wheel torques u are obtained by inverting Eq. (45). Tble S Cas 1: Peruanee Indices
This solution for m is not unique unless I C) is a square matrix.

Linear plus
Numekical Eamples Linear quadratic

Several examples are considered for an asymmetric feedback feedback
spacecraft with four reaction wheels, as shown in Fig. 3. The Four wheels. J,
moments of inertia of the spacecraft without the wheels and Q1 6.1els. 6 9th he xalmmn pcerf nte hesad6.15126 6.13691
the wheel axial moment of inertia are given in Table 2; the in- Q2 5.7686 5.62314
ertia matrix 110] and the wheel geometry matrix [C) are
given in Table 3. All examples were performed using linear Skew wheel off. J2

* and quadratic steady-state gains with free final time ff. The ex- 2 6.43 6.47143

amples start with zero initial conditions for wheel and Q3 5.92913 5.73828

spacecraft velocities and end with large initial conditions. Third wheel off. J2
Q1.9.37" 5.76176

Car I Second wheel off, J2

A four-wheel maneuver using J, and several three-wheel 5I 5.92960 5.76077
maneuvers using .J, are executed, all with zero initial wheel First wheel off, J2
speeds. Boundary conditions are given in Table 4 using the Q3 5.92962 5.76071
3.1-3 Euler angles. Table 5 contains the performance indices.

13
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which are evaluated at if,- 120 s for the four-wheel maneuver TIME SCC)
and t -240 s for the three-wheel maneuvers.

A comparison of performance indices with full and partial Fig. I Case 2: Spacecraft angular wdocklus.
weighting on the Euler parameters is made. Q, indicates full
state penalties in the performance index, and Q2 implies that velocities and the initial wheel speeds of case 2. The boundary
no penalties are put on 6o. Figures 4 and S show the spacecraft conditions for this maneuver are given in Table 8. Perfor-
and wheel angular velocities for the case of three orthogonal mance index J2 was used. once with equal weights on all Euler
wheels (skew wheel off ) and Q2 in performance index J2, panaete 6, a d once with weight On ar ter
which produced the lowest three-wheel performance index, parameters , and once with no weight on . Only linear feed-
The control torques are shown in Fig. 6. back was used for both performance indices to demonstrate

the differences between full and partial weighting, although
Cdr 2 quadratic feedback improves control performance when stable

A rest-to-rest maneuver with nonzero initial wheel speeds is linear control is obtained. Figures 10 and I I give the time

performed with three orthogonal wheels (skew wheel off) and histories of the Euler parameters, spacecraft angular

no penalty on 60 in performance index J2. This weighting pro- velocities, and wheel speeds for these two cases.

duced the lowest performance index in cases I and 2. The
boundary conditions are given In Table 6 and the performance Dim ulm
indices evaluated at I, -240 s are given in Table 7. Since the in- The performance indices in Tables $ and 7 were reduced
itial and final Euler angles are the same as in case 1, the Euler when quadratic feedback was added to the linear control. In
parameters A, are the same, but the system angular momen- both cases quadratic feedback produced Euler parameters that
turn is larger and, hence, the Euler parameters 6, are different. reached their final states earlier and resulted in a lower perfor-
Figures 7-9 plot the spacecraft and wheel angular velocities mance index. This also occurred with the spacecraft angular
and control torques. Note that the final wheel speeds are 75, velocities in case 2.
50, and 100 rd/s for O, 03, and 1, rMpectively. A comparison was made between full and partial Euler

parameter weighting in the performance index, since specify-
cameJ ing values for three Euler parametes automatically produces a

A three-dimensional maneuver is demonstrated for the value for the fourth when the nonlinear state equations are
throe-wheel configuration with large initial spacecraft angular used. No stability problems were encountered using partial

14



EULER PARMETERS DELTA

TIME t CC

0 as Its lee 940 0 so Ile 1" 140

TIME (SCC) SPACCCRArT ANGULAR VELOCITIES
1. :LrNE[ rcCogmCic

U 2

GO~ °

.HEL ANGULAR VELOCITIES

a soe Its Isea 840 78 LINEAR FEEDBACK

TIME (SEC) set s

00

Trble 7 Cae 2: Perfortsace indics

Tso1 Itssn )

TITIE MCIC

Linear feedback 4.81211Fig. 9 Case 2: Wheel anular selocities: 1 linear feedback; 2. linear Liner plus quadratic fCetdback 4.29420plus quadratic feedback.

Table 6 Cow 2: oumalars coindllons Table I Cae 3: Boundary conditios

Initial states Final states Initial states Final states

6dw 0.0 0.0 wn 0.0 0.0
2 0.0 0.0 W2 0.0 0.0

,-3. 0.0 0.0 Uj -0.01 0.0
, -,/2 v/2 0 - v/2 u/2
9 -13 13 -uw/3 13
0 -T/4 v14 ,p - 14 u/4
"o -0.12815 0.37037 60 -0.22769 -0.07728
6, 0.19439 0.10026 6, 0.47213 -0.2S249
6 0.45281 0.74062 62 0.4335 0.93018
6 0.653192 0.55359 6, 0.11640 0.24472
0 50.0 - 0, 50.0
02 -75.0 -2 -73. -
0) 100.0 -1 0) 100.0
9, 0.0 - 04 0.0

114em Table 4 footnote. "See table 4 footnote.
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EULER PARAMETERS DELTA destabilizing corrections to the linear closed-loop equations,
,.U LINER rccowc.x since bounds have been placed on the states through the per-

formance index. As is evident in comparing Figs. 10 and I,
introducing the penalty on 6. departure motion eliminates the

3 Etumbling motion and yields an attractive optimal maneuver.

" Conclusions
t Polynomial feedback on angular velocities and Euler

-a.sIJ parameters have been used for nonlinear control of a
spacecraft with four reaction wheels. A comparison of linear

TIM. (EC) and quadratic control was made, with a reduction in the per-
S in s* , forniance index for quadratic feedback. When using redun-

dant attitude variables, care must be taken so that the linearISPACECRprVT 4GULA VCLocITIcs gains (based upon linearized departure motion state equa-
81. L IWa rcoac, tions) result in modest violations of the implicit constraints.

This may be enforced by penalizing all states in the perfor-
mance index weight matrix.
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SPACECRAFT ATTITUDE CONTROL USING

GENERALIZED ANGULAR MOMENTA

Connie K. Carrington
John L. Junkins

Suboptimal nonlinear state feedback control laws are developed for space-
craft attitude control using the Euler parameters and conjugate angular
momenta. Time-dependent gains are determined in closed form for polynomi-
al feedback laws, and stable nonlinear state feedback laws are developed
from Lyapunov functions. The Lyapunov laws are made optimal by adjusting
constants to minimize a quadratic performance index. Numerical simula-
tions fo; single and three-axis large-angle slew maneuvers are presented.

INTRODUCTION

Many current and future spacecraft missions require rapid large-angle reorientation
maneuvers. Traditional feedback controls may not be adequate for the accuracy and
speed required for on-board, real-time implementation, prompting investigation of

Z4 control laws using alternate state variables. Recently, feedback control laws using
the four Euler parameters or quaternions 1,2 and the spacecraft angular velocities
have been developed for attitude control (see Refs: 3-8).

Morton9 has presented a new formulation of rigid body rotational dynamics in terms
of four generalized angular momenta that are conjugate to the Euler parameters.
Rotational motion is determined by eight state equations that are cubic polynomials
in the states. The development includes applied torques, which will be used in this
paper for spacecraft attitude control.

Suboptimal polynomial state feedback control laws 8,10 that minimize a quadratic
performance index are developed for rapid large-angle spacecraft maneuvers. The.

*: costates are written as polynomials in the states, producing sets of differential equa-
tions for the gains. These equations are solved recursively, since the linear and
zeroth-order gains determine coefficients in the equations for the quadratic gains.
Each set of equations are solved in closed form, producing gains that are polynomi-
als in time. A suboptimal control law is generated by truncation of the polynomial
expansion in the states. A numerical example using this control law is presented
for a single-axis, large-angle, spin-down maneuver.

Nonlinear state feedback control laws utilizing Lyapunov functions1' are also in-
vestigated for single and three-axis maneuvers, as in Refs. 3 and 4. Unlike the
time-dependent polynomial control laws examined earlier, these feedback controls
* Assistant Professor of Mechanical Engineering, College of Engineering,

University of South Carolina, Columbia, South Carolina 29208.

+ Professor of Engineering Science and Mechanics, Virginia Polytechnic
Institute and State University (VPI & SU), Blacksburg, Virginia 24061.
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are guaranteed to produce a closed-loop system that is asymptotically stable in
the large. Constants in the Lyapunov laws may also be adjusted to minimize the
quadratic performance index of an optimal control formulation. The system re-
sponse for the optimal Lyapunov control law demonstrates the moderate rise-time,
short settling time, and low overshoot associated with optimally damped (f = 0.707)
second-order systems.

EQUATIONS OF MOTION

The attitude control problem for a rigid spacecraft is governed by a set of kinematic
equations defining orientation of the body with respect to an inertial frame, and
a set of dynamic equations representing rotational motion. The orientation of a
body-fixed reference frame {b} to an inertial frame {fi} is given by the projection

{~} fCI~i}(1)

• "'- where [C] is the direction cosine matrix. Instead of three Euler angles. the four
Euler parameters' 2 will be used to parameterize the elements of [C]. The Euler
parameters are defined as

/3o = cos(0/2) (2)
= 1, sin(t/2)

where 1, are components of a unit vector along the principal axis of rotation when
rotating from {} to {b}, and 0 is the rotation angle for that reorientation. Since
rotational motion has three degrees of freedom, the four Euler parameters are once
redundant and satisfy the constraint

_ 0_ = (3)

The time derivatives of the Euler parameters are functions of the spacecraft angular

velocity components wi and the Euler parameters.

Rotational motion is governed by Euler's equations, which are generally written in

terms of the angular velocity components wi. Consistant with the development of
Hamilton's canonical equations' 2 , Euler's equations are reformulated in terms of
generalized angular momenta pi that are conjugate to the Euler parameters. They
are defined from the rotational kinetic energy T as follows

A = aT= i = 0, 1, 2,3 (4)

The equations governing the time derivatives of the Euler parameters are also re-
formulated in terms of the generalized angular momenta, producing the following
eight equations of motion19
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{i' = -(0()i1 141Q(){'"f} + 21Q(f#)]{u} 44 (5)
i) = 4[ Q(jfl ]4[Q(1)JT {f p}

where [Q(13)) and [I 'J4 are 4x4 matrices defined as follows

Sflo -#, -/ 3 -/03

( 1 00 - 13 f (2

L03 -02 01, 0

and

11 '. = ding {o. 1/1. 1112, 1/h) (7)

11, 12, and I:, are the spacecraft moments of inertia in a body-fixed. principal-axis

reference frame. The nonzero elements of { u)4 are the control torques about the

principal axes

-{, , = {() o ,,J 2 1:} (8)

E(Is. (5) are Hamilton's canonical equations in which {p, 0} are the eight state
variables. These variables are twice redundant, with the #, satisfying Eq. (3) and

./' the p, satisfying the following constraint.

* 3

* =- 4H 2  (9)
t=0

where H is the magnitude of the system angular momentum vector. These con-
straints are both integral properties of the system equations, however, and hence
they do not need to he explicitly enforced when defining the optimal control prob-

OPTIMAL CONTROL PROBLEM

l* Formulation

The state equations are cubic polynomials, so that polynomial feedback control
laws may be developed using an optimal control formulation'. No linear terms

N. are present in Eqs. (5), however, and there are fewer control variables than states, so
that the algebraic gain equations are in many instances degenerate. In these cases no
solution can be found for constant gains."3 Two remedies can be considered for this
situation. The first is to introduce linear terms into the system equations by using
the syst.emn errors as new state variables. The new state vector is z(t) = r(t) - r(tf),
where z(I) is the old state vector and r(tj) is the desired final state. Linear ternis
with contiant coefficients r(Ij) ap)pear in the n(' state equations. The optinmal
control problemi is formiulated using the error vector :, and the costares are written
as polytomnials in z. Sets of equsatiojs for the gaits are deterhined by equating

20
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coefficients of like powers of z in the costate equations. Constant linear gains call
be determined from the algebraic Riccati equations if at most one zero pole occurs
in the linear part of the state equations, and higher order gains can be calculated re-
cursively from the subsequent linear algebraic equations. Unfortunately, the system
represented by Eqs. (5) contain two zero poles, corresponding to /0 and Po. The
eigenvectors for these poles cannot be determined accurately enough to produce a
reasonable solution to the Riccati equation using Schur's method 14, so the constant

.- gain solution will not be used.

The other solution technique for state equations containing no linear terms is to de-
termine time-dependent gains using the original cubic state equations. The tracking
problem can be formulated using a performance index that minimizes the difference
between the state and the target, and a final state penalty can be posed. The
costates are written as polynomials in the original states z, and the gain equations
are defined as before from the costate equations. The differential equations defining
the gains are simple, so that closed-form solutions may be found by integration.
The terminal boundary conditions for the costates, which are determined by the

performance index, specify constants of integration in the expressions for the gains.

Given the state equations in Eqs. (5), the performance index to be minimized is

1 1 -fTj.Z.:. j =,1 T + f t {IQz + _R4r }dt (10)-'.,.. - z (t) zt)+

where z is the difference between the state z and the target state r

AM-= _( (t) - _(t1 ):'::(11)

The. =(t) = { PO PI P2 P3 00 01 0 3 }
The necessary conditions for optimality produce the following costate equations

W aC (P)]A
"''j C' jl A Ip , ,,A, -c,.,(O)-, - qiIZ,

=1C,, - 1 28 [ JQ(1 ]Ajuk - qjIz1  (12)

--"i, = 1,..., 3

where A,. and 'y, are the costates corresponding to p, and 8, respectively; the 4x4
matrix C is

C(p) = [Q(p)][l-J 4 [Q(p)]T  (13)

and the terms in brackets are Jacobians. The control is

_M4 = -2R-Qr(O)A (14)

and the terL_,nal boundary conditions on the costates are

{":(")} = H(t,) (15)
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Assuming the costates are polynomials in the states,

{ W:8t } - 8g(t) + kij(t)z, + dik(t)jxzk + ... (16)

then the boundary conditions of Eq. (15) produce the following conditions for the
time-dependent coefficients in the polynomial expansion

S(tf) = -Hr(tf) (17)

K(tf) = H

with all higher-order coefficients going to zero at t = tf.

S By substituting Eq. (16) into the costate equations and equating coefficients of like
powers of x, we obtain the following sets of equations

• zj = qj r-

k,. = -qt, + f'G(.)

djk = f2(s,,kj)

where f, and f2 are functions of lower order coefficients. Eqs. (18) can be integrated
in closed-form, and the constants of integration determined by Eqs. (17). The feed-
back gains produced in this method are polynomials in time, which are substituted
back into Eqs. (16) and (14). A suboptimal control law is determined by taking a
finite number of terms in Eq. (16).

Single Axis Maneuvers

For single-axis maneuvers about the first principal axis, Eqs. (5) reduce to the
" following equations

12
i= 1 (Z1Z2Z4 - zT2z3) - 2Z4U

1 ... * 4= (zlXZ3 -ZIZ4) + 2Z3U
1 2

i3 = j-(zlZ4 -X2Z3Z4)

-4.1
i4 * = 4- (z2=s- ZIZ3Z,)

where x = { PO P 0 1 }T and u is the control torque to be determined. For the
following performance index

j1T (t)Hz(t) + I: f {zTQz + u2)dt (20)
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where z(t) = X(I) - r(tj) and r(It) is the desired final state, then the costate

equations are

V 1 = -q 1liz - j/(AI\z 2X4 + A 2(z2X3 - 2IX,4) + ,\3z4 - ,A4z3z4)

A2  -q 2 zj + 4-(A(2Z2X3 - zXz 4 ) - A2 Ixz3 + A\3 z 3 z 4 - 1\4()

2(21)"A3 "- -q 33 z.3 t  A/' " 22z' xl2 "+ A 3z2z4 + ,A4(zlz 4 - 2z2z3)) - 2,A2U

A4 = - - :(AIXIX2 - A2X + .\3(2zlz 4 - X2X3) - A4.1z 3) + 2A1u

and the control is
u = 2(. 4AI - X3A 2). (22)

A1 and A2 are the costates corresponding to the conjugate angular momenta Po and
Pl, and A3 and A4 correspond to Euler parameters ,0 and 01.

For this example, the weighting matrices Q and H are

Q = diag{ q, q2 q3 q4 } (23)

H = diag{ hi h 2 h 3 h 4 }

The zeroth-order equations are

Si = qiri(tj) (24)

which, with the boundary conditions in Eq. (17), have the solution

= -qri(tf)(t ! - t) - hr,(tj) (25)

The linear equations are

kii = -qi i 1,2

k33 = -q 3 + 442 (26)
.44 = -q 4 + 4.2

These equations have the solution

k =(t) = q,(t - t) + h, i - 1,2

k33(t) = q3(tt - t) + h3 - 4r2(1){q2r + q2h2 (t I -t) 2 + h2(t ! -t) (27)

k 4 4 (t) = q4(if - t) + h 4 - 4r2(l,){q2r + qlhI (if - t) 2 + h 2(t - t)}

where
r - (t3 -t3)/3 + tit - t2 (28)

23



PO€:; '.2 '-- P
P0. q '.

9..
Id 

"

I '.

p I

~.

*12
0 "

2 '" " -- . I I -. 0 ... '--
0 I 2 A 4 5 6 7 8 9 t0 0 2 3 % 6 7 a 9 10

Fig. I Single-Axis Conjugate Angular Momenta

1 s, + k, +,j
2 8: + k,,z, + dt3 kZjzk

The quadratic equations are

d14 = s2/21

d,2 3 = -82/41
d124 = -,1 4 1

d 134 = -4k 11  2 + 84/41

d144 = 4k 1 1,8 - 83/41 (29)

d2 13 = -s2/41

d214 = -a,/41

d223 = a,/21

433 = 4k 2 2 82 - 84/41

2 34 = -4k 2 281 + 53/41

and 0,, = 0 where not otherwise specified. The terminal boundary conditions for

these equations are d,,k(1f) = 0, and the solutions contain linear through cubic
powers in time. Similar polynomials in time are found for higher order gains.
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SArapd arg-anle spin-down maneuve wa0iultdwih000 .0kgm n

H=Q0i gO1 .1 0.1 0.8} (30)6

Te cgu m nd Euler Parameters

2. Fig. se containsuthermaneuvetiangleoandhcontrolvtorque histres.nTl 1 n

. Table 1
~SINGLE-AXIS BOUNDARY CONDITIONS

"State Iniitial StM teS
:"4 (rad) -ff/3 /3

w' (rad/sec) 1.000 0.000
0 3 .866 0. 866

-0.500 0.500
SPo (kg mn2 rad/sec) 1.000 0.000

Pi (kg M 2 rad/sec) 1.732 0.000
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Table 2

SINGLE-AXIS PERFORMANCE INDICES
POLYNOMIAL FEEDBACK CONTROL

AA Performance Index
a, + kiz, 3.13

ai + k,,z, + di,kzZk 0.49

Note that A, =s a, kqzj only controls angular momentum, and the addition of
quadratic terms are required for attitude control. Since the control influence ma-
trix contains the Euler parameters, \, = ., + k,, z, + dsjk xzt results in cubic control
terms in the state equations. This cubic feedback law provides a significant reduc-
tion in the performance index by reducing the Euler parameters errors, even though
larger angular momentum values are incurred.

LYAPUNOV CONTROL LAWS

Formulation

Stable feedback control laws may be determined for autonomous systems from Lya-
punov 's second method"1 . To apply this method, the state equations are trans-
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formed so that the target state is the origin. This is accomplished by defining new
states (t) = _(t) - r(tj) as discussed in the previous section. A scalar positive def-
inite function V(z) is defined, and a control law is found that makes the total time
derivative of V(z) negative definite. This control law will then be asymptotically
stable and drive the system to the origin.

Consider the positive definite function

V =2 ,;(31)
r=1

where
Z,(t) = ,(t) - r,(tj)

={PO PI P2 P3 3 2 i 3 }T (32)
Then

V= 4 > zii, (33)
t=1

where z, = . Eqs. (5) are substituted into Eq. (33) to give V the following form

= f(z)uI + f2( )u2 + f3()U3 + f4(!T) + fs(G) + f6() (34)

where ul, U2 U3 are the control torques to be determined. For asymptotically stable
control, V must be negative definite. A suitable expression for V is

V = -{Clf2(z) + C2f2(_) + C3f2(_)} (35)

where C1 , C2 , C3 are constants to be defined later. By equating Eqs. (34) and (35),
S.• a solution for the control torques is found

22 = WS= -6) J -C3 f
_ =3 = - 3t (_Z)

The functions fl, f2, 13 are quadratic polynomials in ; and f4, Is, fe are cubic
polynomials in z, so that the quotients in Eqs. (36) are well-behaved as z --# 0.
The control laws are made optimal by adjusting the constants CI, C2, and C 3 to
minimize the quadratic performance index in Eq. (10).

Single Axis Maneuvers

The large-angle, spin-down maneuver that was demonstrated with polynomial feed-
back control is repeated with Lyapunov control. The boundary conditions are those
listed in Table 2. The Lyapunov function is

4

2V = 2 (37)
j= I
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* Fig. 4 Single-Axis Conjugate Angular Momenta and
Euler Parameters Using Lyapunov Control

and

1V 8{X3 z2 - 4z1}U- rigi(0) - r2t)2O- -3t)3! r4(tf)g4 (X) (38)

where
91(1 =(X 2 --4 - 4rX3)I

92!)= (XIX 2z 3 - zXl-4/I (39)
93)= (zXIX - 2X3X4)I

9()= (-2X3 -ZlZ 3X4)/I

To obtain
V = -C(X 3Z2 - Z4Z1 )2  (40)

let

8(Zz2 - zz ) 8 -(

This control law produced the performance indices in Table 3 for various values
of C. These performance indices were evaluated at if= 30 sec. The minimum
performance index occurred for C = 2.9, and the corresponding system response is
plotted in Figs. 4 and 5. The conjugate angular inomenta and Euler paramneters are

slhOwm in Fig. 4. and the meifiv(r aiigle o alid conitrol tor(iUc ti tire plot ted ill Fig.

"11"l ,.ret_ e -- c i it _a-r

5. The weighting matrices Q and i ti exa lare te I n
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Fig. 5 Single-Axis Maneuver Angle and
Control Torque Using Lyapunov Control

Table 3

SINGLE-AXIS PERFORMANCE INDICES
LYAPUNOV CONTROL

C Performance Index
1.0 7.05
2.0 3.13
2.9 2.61
3.5 2.71

To demonstrate the variations in response for changes in C, a 900 maneuver was
executed. Fig. 6 shows this maneuver angle for several values of C. When C is
smaller than its optimal value, the response is similar to an underdamped second-
order system, and for large values of C the response is overdamped. For C = 1.5, the
maneuver angle responds like an optimally damped (C = 0.707) second-order system,
and the quadratic performance index is minimized. Table 4 lists the performance
indices corresponding to the curves plotted in Fig. 6.
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Fig. 6 Single-Axis Maneuver Angle Responses
for Several Values of C

Table 4

SINGLE-AXIS PERFORMANCE INDICES
LYAPUNQV CONTROL

C Performance Index
0.5 2.49
1.0 1.59
1.5 1.48
2.0 1.58
10.0 4.70

Three Axis Maneuvers

By substituting Eqs. (5) into the Lyapunov function of Eq. (31), V becomes

V8{(-zT6 ZI + zSZ2 + zTIz 3 - zT7Z4 )U1 +
(-Z7ZI - zTBz2 + ZSz3 + XZz 4 )U2 +
(-zTOZI + Z7Z2 - Z6z3 + z-Sz.)U 3  + (42)
p(t,)T[Q(P)1[Ir141Q(P)]T13
/3(tf)r[Q(0j3 [14MO ]4Q )
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Fig. 7 Three-Axis Conjugate Angular Momenta and

Euler Parameters Using Lyapunov Control

A negative definite form for V is

, = -{Cl(-z6z1 + XSz 2 + zSz 3 - z7 z4) 2 +

C 2(-zX7 zI - zSZ 2 + X5z 3 + z 6z4 2  + (43)

C 3 (--sz 1 + z 7 Z2 - z 6 Z 3 + ZSZ4) 2 }

By equating Eqs. (42) and (43), and assigning all terms containing I, to f4(;),
all terms containing 12 to fs() and those containing 13 to f6(;), then the control
torques are defined by Eqs. (36). The functions fh (), fh(;), and f3() are identified
by comparing Eqs. (35) and (43).

A large-angle three-axis spin-down maneuver was executed using the boundary con-
ditions listed in Table 5. The 3-1-3 Euler angles 0, 9, 0 correspond to the given Euler
parameters. Table 6 contains the mass properties of the spacecraft, and the final
time is if = 50 sec. As in the single-axis maneuvers, varying the constants C1 , C2,
and C3 produce responses that exhibit the characteristics of damped second-order

'I. systems. Several values of these constants with their corresponding performance
indices are listed in Table 7. The minimum performance index occurs for

C, = 1/I;
C2 = 1/1 (44)

C3 = 1/13

and Figs. 7 and 8 plot the state variables, angular velocities, and control torques
for this case. 31
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Table 5

THREE-AXIS BOUNDARY CONDITIONS

State Initial State Final State
, (rad) -7r/2 7r/2
0 9 (rad) -7r/3 7r/3
10 (rad) -7/4 r/4
w, (rad/sec) -. 5 0.0
W2 (rad/sec) 0.3 0.0

w3 (rad/sec) 0.1 0.0

-0  -0.331 0.331
131 0.462 0.462

,2 -0.191 0.191

03 0.800 0.800
Pc (kg M 2 rad/sec) 0.410 0.000
pi (kg M 2 rad/sec) -0.102 0.000
P2 (kg m 2 rad/sec) -1.050 0.000
P3 (kg m2 rad/sec) -0.022 0.000
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Table 6

SPACECRAFT INT'RTIA

Axis Moment of\.,ertia (kg m2)
1 1.00
2 0.83
3 0.92

Table 7

THREE-AXIS PERFORMANCE INDICES

C C2  C3  Performance Index
1.00 1.00 5.00 4.893
1.00 0.83 0.92 4.543
1.00 1.00 1.00 4.368
1.00 1.20 1.09 4.225
1.00 0.60 0.20 6.710

CONCLUSIONS

State feedback control laws have been formulated for a new set of state equations
representing rigid-body rotational motion. The polynomial state equations allow
development of polynomial feedback controls using optimal control theory. The
absence of linear terms in the state equations and the double redundancy of the
state variables preclude the use of constant gains, but time-dependent gains are
determined in closed form. A single-axis example demonstrates that quadratic
terms in the costates are required for complete attitude control.

A second group of control laws is developed using Lyapunov functions. Although
nonoptimal, these laws produce asymptotically stable closed-loop systems, and con-
stants may be adjusted to minimize the quadratic performance index of an optimal
control formulation. The system response for both single- and three-axis maneuvers
exhibit characteristics of a damped second-order system; the combination of con-
stants that minimizes the performance index produces a response associated with
an optimally damped (C = 0.707) system.

A comparision of polynomial feedback laws and Lyapunov laws shows that Lya-
.punov control is easier to formulate. For systems involving more than a modest

number of states, the algebra required by polynomial control becomes prohibitive
and an algebraic manipulator should be used. There are several advantages in us-
ing the conjugate angular momenta for state variables instead of the three angular
velocities. Polynomial feedback control using angular velocities was examined in
Refs. 8 and 10, and those state equations produced coefficients in the gain equa-
tions that are dependent on the final states. Although the equations do not need to
be reformulated each time the target states were changed, a system of simultaneous
ecuations must be resolved to find new gains. In this paper, the time-dependent
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gains using the conjugate angular momenta are found in closed-forni and are quickly
calculated f- changes in the target state. The cubic form of the angular momenta
equations also produce Lyapunov control laws that are well behaved as the errors
go to zero.
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AN ASYMPTOTIC PERTURBATION METHOD
FOR NONLINEAR OPTIMAL CONTROL PROBLEMS
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ABSTRACT

A quasi-analytical method is presented for solving nonlinear, open-loop,

optimal control problems. The approach combines a simple analytical,

straightforward expansion from perturbation methods with powerful numerical

algorithms (due to Ward and Van Loan) to solve a series of nonhomogeneous,

linear, optimal control problems. In the past, the only recourse for solving

. such nonlinear problems relied almost exclusively on iterative numerical

- - methods whereas the asymptotic perturbation approach may produce accurate

solutions to nonlinear problems without iteration. The nonlinear state and

costate equations are derived from the optimal control formulation and

expanded in a power series in terms of a small parameter contained either

explicitly in the equations or implicitly in the boundary conditions. Each

order of the expansion is shown to be governed by a nonhomogeneous, ordinary

differential equation. Representing the generally non-integrable,

nonhomogeneous terms by a finite Fouries series, efficient matrix exponential

algorithms are then used to solve the system at each order, where the order of

the expansion is extended to achieve the appropriate precision. The asymp-

totic perturbation method is broadly applicable to weakly nonlinear optimal

control problems, including higher order systems frequently encountered in

. Professor of Aerospace Engineering, AIAA Fellow.

Graduate Research Assistant, Engineering Science and Mechanics, AIAA Member.
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aerospace vehicle dynamics and control. A number of numerical examples

demonstrating the perturbation approach are included.

OPTIMAL CONTROL FORMULATION

Consider a nonlinear system of the form

x + rx + Ax = Bu + f(x~i~u.6.t (1)

where x is an nxl vector of system coordinates, r is a diagonal matrix of

damping factors, A is a diagonal matrix of stiffness factors, B is the control

influence matrix, u is an mxl vector of controls, and f is a vector containing

all nonlinear terms. The form of Eq. (1) is based upon the assumption that

the linear part of the equations of motion have been rendered independent via

a linear transformation to reduce the complexity of the optimal control

formulation. If all of the n system coordinates are to be controlled, this

procedure is entirely arbitrary although it will often prove useful (with

regard to the validity of the methods herein). However, for a control problem

in which a subset of the system linear modal coordinates are to be controlled,

the decoupling procedure is necessary. Furthermore, it is recommended that

the equations be nondimensionalized to reduce the number of parameters

involved and to isolate the dimensionless parameters critical to the behaviorp
-" of the system. We shall proceed with the development of the perturbation

approach in configuration coordinates, based upon the assumption that the

linear part of the equations of motion have been decoupled while recognizing

that the use of dimensionless coordinates would merely scale the coefficient

matrices.

Forming the state vector of the system coordinates, controls, and their

first derivatives, the state equation is
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i=Fz + DU + (2)

where
_ [T iT u T TT (2n+2m) x

F = [ I(2n+2m) x (2n+2m)
(2n+2m) x m

U=u nmx 1

_0 =0 fT 0T oT1T (2n+2m) x I

Including the controls and control rates in the state vector z allows us to

penalize large control accelerations in the optimal control problem. This

will insure that the control trajectories generated will be smooth and

continuous, with prescribed (usually zero) magnitudes at the initiation and

completion of the maneuver (Ref. 1,2). We seek the optimal control trajectory

that minimizes the quadratic performance index

2 1 T +; (zTQz + uTRU)dt (3)

f 0

where R and S are positive definite, diagonal weight matrices, and Q is a

* -, symmetric, positive semi-definite weight matrix, where Q = 0 is not

excluded. It is clear that the matrix Q may be used to weight not only the

position and velocities of the system coordinates, but the controls and
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control rates as well due to the inclusion of these variables in the state

vector z.

The Hamiltonian, formed from the system given by Eq. (2) and the

integrand of Eq. (3), is defined to be

H 2 (z Qz + UT RU) + XT(Fz + DU + .)

where the costates x are a set of undetermined Lagrange multipliers.

OR Pontryagin's necessary conditions for determining the optimal control,

operating on the Hamiltonian, yield the equations

aH Fz + DU + P (5)
-ax

_ _ = _Qz - FTX - IT (6)

aH TZ

0 L- = RU + DT (7)

with the boundary condition x(tf) = Sz(tf).

Solving Eq. (7) for U and substituting into Eq. (5) reduces the optimal

control problem to two coupled first-order, nonlinear, ordinary differential

equations. Combining the unknowns, z and x, into a single augmented

state/costate vector X, the optimal control problem may be restated as

X = + E(NLTI (8)

where

X=[Z
T xT T
T =_ T 2(2n+2m) x 1

A = -FDRDT 2(2n+2m) x 2(2n+2m)
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{NLT) = a 2(2n+2m) x 1

and where the dimensionless parameter E is a "bookkeeping" term indicating the

numerical order of the nonlinear terms.

Upon solving the Two-Pjint Boundary-Value Problem given by Eq. (8), the

state trajectory, which includes the optimal controls, may be generated at any

point within the time interval to 5 t _ tf. However, as a consequence of the

presence of the nonlinear terms, the system governed by Eq. (8) is

analytically intractable. Although there are many iterative methods available

for solving such nonlinear systems, we wish to construct an approach, using

the most basic of the perturbation methods, that circumvents the iterative

techniques in favor of a quasi-analytical solution to the optimal control

problem.

AN ASYMPTOTIC PERTURBATION METHOD: THE PEDESTRIAN EXPANSION

* For any given weakly nonlinear, differential equation, It is often

constructive to employ a straightforward expansion from perturbation methods

to produce an approximate solution to the problem (Ref. 3). We assume the

solution to Eq. (8) may be represented by a power series in terms of a small

*-', dimensionless parameter c

2X(t) = Xo(t) + cXl(t) + E X2(t) + ... (9)

For small nonlinearities (small c), the series is expected to produce accurate

results where the accuracy will improve as the nonlinearities, and

consequently the parameter E approach zero. Indeed, in the limit, as the

number of terms in the series approaches infinity, the solution given by Eq.

(9) will be exact if the expansion is convergent.
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Substituting Eq. (9) into Eq. (8) the optimal control problem may be

* expressed as

R- +  X +2. + O(¢3) AX X + 2 AX + c{NLT (X)i
-0 - 1o X+ c -2 -21- (10)

p + E
2 (NLT2 (,X-1)) + O(c 3 )

where the nonlinear terms have been expanded in a similar power series and the

w"I-Z dependence of each term upon the expansion variables (Xi) at each order is

p indicated. Equating terms with equivalent powers of c yields the series of

equations

0 -=AX (11

- q, + {NLTj(4)} (12)

2 AX2 + INLT 2(X (13)

where for illustrative purposes we have included only the equations through

2order c . However, we note that the order may be extended to achieve the

N degree of precision required for a specific problem. The boundary conditions

- of the expansion variables are

.xt' -(t0 ) X =(tt) f) (14a)
* ~. 00 f~(t0)) -of (tf))

ti(tf) = i = 1,2,3,... (14b)

where we recall that the final conditions of the states and costates are

related at each order through the boundary condition xi(tf) = Szi(tf). The

straightforward expansion produces a strictly linear problem as the first

approximation (zero order) of the nonlinear problem and then provides a series
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of "small corrections" (higher-order terms) to account for the effects of the

nonlinearities. Furthermore, the nonhomogeneous term in the ith equation of

higher order (i = 1,2,...) is independent of the expansion variable Xi for

that particular equation. Upon solving Eqs. (11-13) sequentially, the

significance of this observation becomes clear; the nonhomogeneous terms

constitute known functions of time. By employing the perturbation method, we

have, as usual, replaced an intractable nonlinear problem with a series of

nonhomogeneous, linear, first-order, ordinary differential equations.

- SOLUTION OF THE NONHOMOGENEOUS EQUATIONS

The solution of a system of the form given by Eqs. (11-13) can be shown

to be

Xi(t) = eri(O) + f e d.(T)dT] , i = 0,1,2,... (15)

where

d (T) 0
-0

- i( )  {NLTi} , i = 1,2,...

and where to 0 has been assumed without loss of generality. Although Eq.

(15) provides the solution for each expansion variable, evaluating the

integral for an arbitrary function di presents a formidable task and may

require numerical integration. On the other hand, if the nonhomogeneous term

may be represented accurately by a continuous function of time, in exponential

form, the entire solution given by Eq. (15) may be evaluated using a matrix

exponential.

Since we have no closed form expressions for the nonhomogeneous terms, at

best we can generate a large set (k) of data points which are the "sampled"

2 trajectories of the forcing terms. A finite Fourier series of the form

r
f(t) = bo + Z a.sin io t + bicos iWot (16)0. 1". 0 = 0
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may then be used to represent the nonhomogeneous terms as a continuous

i function of time. To calculate the coefficients of the series, we use a least

squares fit of the series to the data points describing the nonhomogeneous

function. It can be shown that the Fourier series of the Jth element of the

Ith forcing term may be put into the form

Acj -j (17)

where

1 0 1 0 1 ... 0 1

1 S(Tl) c(r1) s(2Tl) c(2TI) ... s(rtj) c(rTl)

A = 1 s(t2) c(T2 ) s(2T2) c(2t 2) -.. s(rt 2) c(rT2)

-i i

1 s(Tk) c(Tk) s(2Tk) c(2Tk) ... s(r rk) c(rTk)

ck)! k) )k ... d'

-j - lboj blj 2j b2j "" arj brj IT

d. = fdI(O) dJ(&t) d (2tt) ... d(k +t)

T, = LW 0at , t =..,

At = tf/k W0 = 2/tf

C( =Cos() s( =sin()

and the notation dJ(k~t) indicates the jth element of di(t) evaluated at t

= kAt. The unknown coefficients may then be found from the least squares

"I approximation

cj = (ATA) IAT;. (18)-J

Note that with appropriate sample points (symmetric about T = ,), ATA is

diagonal and the inverse is trivial. Alternatively, we can develop these

coefficients from a discrete Fourier transform. Proceeding element by element

through the ith forcing term, we can then represent each element by a finite

Fourier series. It can also be shown that the forcing term may then be given
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by the matrix exponential equation

di(t) - Gieat% (19)

where

Gi = [-1 22 23 s]T  , s - 2(2n+2m)

i = lboj w oaj b1j 
2w0a2 j b2j ... rwoarj brj IT

j - 192939,...,ss

[1 0 1 0 1 ... 1]T  (2r+1) x 1

= Block Diag OaO 2 , ...,to r]  (2r+1) x (2r+1)

aL _(tw)2 10 t=1,2,3,....,r= 11 0 0)

We now have the nonhomogeneous term represented by a continuous function

of time given in exponential form. Consequently, we may use "Van Loan's

identity" (Ref. 4) to produce the solution given by Eq. (15) using any

available matrix exponential algorithms5. To accomplish this, we define

A= 
(20)

and Van Loan proves that
eYi t =[01t)€2~~

= 0 3 (t) ] 
(21)

where the state transition sub-matrices satisfy the identities

01(t) e (22a)

* 21 (t) e e-A TGieuTd (22b)
0

.3 (t) eat  (22c)
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Clearly, Eqs. (22a, 22b) may be substituted into Eq. (15) yielding

Xi(t) *1 (t)Xi(O) + 021(t)!R (23)

where we note that #21 (t) is numerically different for each expansion variable

!j, as indicated by the subscript (i) in Eqs. (21-23).

SOLVING FOR THE INITIAL COSTATES

S Equation (23) is the form of the solution for each unknown variable (Xi),

however recalling the boundary conditions on the unknowns, Eq. (14), we

. realize that the initial costates, Xi(O), and hence Xi(O) are as yet

undetermined. The initial costates must be found in order for Eq. (23) to

.2 provide the numerical solution of the optimal control problem. Evaluating Eq.

.5- (23) at t = tf and recalling the boundary conditions from Eq. (14), we get

Ii(tf )  Ii ( 0 ) I

Xi(tf) = I= 1'(tf) + @2i(tf)2 (24)- Si(tf) Li (0)

It will prove useful to write the state transition matrix o1 (tf) in

partitioned form and to partition the last term in Eq. (24). Therefore, we

define
11 12

01 (lttf 1 (25a)

S1(tf) [ 21(tf) 22(tf)1 (25a)

.. 021(tf)qo  (25b)
" . *2i(tf)

Substituting Eq. (25) into Eq. (24) yields the two coupled algebraic equations

Zi(tf) = s 1(tf.)z.(O) + 412(tf)xi(O) + 01i(tf) (26)

Sz(tf 1 tf)i(O) + 2i(tf) (27)

in which Wi(O) is tne only unknown.
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Multiplying Eq. (26) by the positive definite matrix S, combining this

with Eq. (27), and collecting terms yields

22 12tf11 21
l [2(tf) - So1 (tf)]i(O) = [Sol (tf)- 01(tf)]zi(O)

+ SOii(tf) - i2i(tf) (28)

which can easily be solved for the initial costates using any appropriate

algorithm. Now that all of the initial conditions of Xi are known, Eq. (23)

can be used to produce the optimal control at any time in the interval

0 5 t 5 tf.

RECURSIVE SOLUTION OF THE STATE TRAJECTORIES

Once the solution for a given expansion variable is found, we then

proceed to the next higher order. However, to produce the Fourier Series

approximation of the nonhomogeneous term in the next higher order requires

that we sample the trajectory of the current order at fixed intervals of

time (tt) throughout the maneuver. Evaluating the matrix exponential

indicated in Eq. (21) at each time interval would prove computationally costly

and time consuming. An alternative procedure is to develop a recursive

formula for calculating the state trajectories whereby the matrix exponential

is evaluated only once at t = tt. We make use of the exponential matrix

recursion

eA(k+l)At = eAAteAkat (29)

to modify Eq. (23). Applying the identity in Eq. (29) to the definitions in

Eq. (21) produces

I 2[(k+l)At] [0 3(At) 0 *3 (kAt)

(30)
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Carrying out the partitioned products indicated yields the three recursive

equations for the sub-matrices

.1i*(k+l)at] - *l(at)ol(k&t) (31a)

4 =2i[(k+l)atl =l(at)o2i(kAt) + 02 1(at)9 3(kAt) (31b)

= *3 (k+ l)at ] - 3 (at)@ 3(kAt) (31c)

where si(0) - I, 02i(O ) = 0, and o3(0) = I.

Similarly, evaluating Eq. (23) at t = (k+l)at gives

xi[(k+l)atJ = 1I(k+1)at]Xi(O) + 02 [(k+l)at]9o (32)

We can then simplify Eq. (32) by defining the vectors vji, J = 1,2,3 to be

vlii (k+l)at] = o1I(k+1)atji(O)

-(k+l)atJ = o2l(k+1)Atlo

K3mi(k+l)Atl = o3 (k+l)at qo (33)

Substituting Eq. (31) into Eq. (33) and substituting this result into Eq. (32)

yields the recursive formula

X'l(k+l)AtI = v1 [i(k+l)atI + Y2i [(k+ l)AtI (34)

and

±v ll(k+1)Atj = oli(At)vli(kAt), Yii( 0) = W0)

S2i [(k+l)Atl = oi(&t)±2i(kAt) + *2 i(Lt)v 3 i(kat). ±21(0) = 0

v3 i[(k+1)Lt] = *3( t)v3 i(kAt), 31( 0) =
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As a result of Eq. (34), the matrix exponential must be calculated only

twice for each Xi; once at t = tf for solving the initial costates, and once

at t = at for the recursive formula. After completing the solutions of each

._ i in the series, the optimal control trajectory is produced by combining the

trajectories from each expansion variable in the series given by Eq. (9). We

again stress the fact that the solution to the nonlinear optimal control

problem has been produced by solving a series of strictly linear, constant

coefficient subproblems without the need for iterative techniques. We shall

illustrate the effectiveness of the perturbation method with numerical

examples of low order systems.

NUMERICAL EXAMPLES

Case 1:

To demonstrate the perturbation method, the first example of a nonlinear

system is a scalar problem with both quadratic and cubic nonlinear terms. The

system, in configuration space, is given by

x + ci + kx = u + c(Bux - x) (35)

where c = 0.1 B = 1.0 C 0.1

. -' k = 1.0 a = 0.5

x(O) = 1.0 i(O) = 0 tf 2

The objective is to determine the optimal controls that will drive the

variable (x) to zero (with a final velocity of zero) in a two second time

interval. To verify that the system is weakly nonlinear, the nondimensional

form of Eq. (35) can be shown to be

+ 1 + n = + 62un - 633 (36)

with 61 = 0.1 62 = 0.1 63 = 0.05

where n is the dinensionless position coordinate and 0 is the dimensionless

control force. Clearly, from Eq. (36), the system is lightly damped with weak
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nonlinearities. We shall choose to penalize only the control accelerations

aand the final state in the performance measure, Eq. (3), and as such we let R

- 1. Q a O, and S - 1020111. The effect of the large weight matrix (S) is to

rigidly enforce the final conditions in the optimal control problem. In the

vernacular of optimal control theory this example is a fixed time, fixed final

state optimal control problem (Ref. 6). Numerically, we shall solve this

problem in configuration space, and as such the matrix, F, is given by

F = -1 -0.1 II 0 0

Similarly, the vector of nonlinear terms in Eq. (8) can be shown to be

0

Bux-ax 3

b 0
0

{NLTi = (3Ox-Bu)x2

0

I 0

where x2 is the second element of the costate vector k. We evaluate the

effectiveness of the optimal control approximations by integrating Eq. (35),

numerically, using a 4-cycle Runge-Kutta routine and examining the final

boundary condition errors of the numerically integrated solution.

*' A second order expansion in the power series yields a final condition

Nx(tf) = -0.000322 from the integrated equation of motion. While not exactly

zero, the error is less than 0.04%. By comparison, the linearized optimal

control, obtained by dropping the nonlinear terms (note that this is also the

*zeroth order expansion variable) produces x(tf) = -0.0402 or an error of over

4%. The perturbation approach reduced the error by two orders of magnitude
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I for a second-order exansion, demonstrating the effectiveness of the method.
The trajectories of the position and control are shown in Fig. 1, where each

profile exhibits the smooth, continuous behavior expected of an optimal

solution of this problem.

Case 2:

'For the second example, the perturbation method is applied to the second-

order system

x + CI + kx = u + clXx1 1 1 1 112

x2 + c2X2 + k2x = u2 + Ea2xx2 (37)

where cI = 0.1 ki = 1.0 aI = 1.0

c2 = 0.1 k2  0.5 a = 0.5

x1 (o) = 1.0 Y(0) = 0 C = 0.1

x2 (0) = 2.0 x2 (0) = 0

In nondimensional, matrix format, the equations of motion are

0.1 0 1 ] (O.l)nln2  (38)
+ 0 0.11 +0 0.5 (.05)nln2

where again we see that Eq. (38) is a lightly damped, weakly nonlinear

system. We shall choose to penalize the final states and the second

derivatives of the controls in the performance index. Mathematically, we

state this by setting R = I, Q = 0, and S = 1020 [I. Proceeding as with Case

1, the results of a second order expansior are compared to the linearized

. optimal control problem as shown.

xl(tf) x2 (tf)

Linearized optimal control approximation: 0.135 0.0868

Second order control approximation: 0.0000166 0.00000945

The final position errors for the zeroth order control approximation are 13.5%
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and 4.3% respectively for the state variables x, and x2. The control

i determined from the second order perturbation expansion reduces the errors by

approximately four orders of magnitude. Such explosive convergence is not

'" typical but it does demonstrate how well the perturbation method may solve

open loop optimal control problems.

Case 3:

As a final example, we wish to test the method with a system containing

larger nonlinearities. To accomplish this, we shall use the same system as

used in Case 2 with the following parameter changes:

a = 2 xl(O) = 3 c = 0.4 C2 3 x2 (0) =2

In dimensionless form, the system is given by

_ + j1O1 1] + [ 05] + (39)
0 0. 0 .0 (3.6) nln 2 1

We notice immediately that this system is strongly nonlinear, and would not

expect controls from the zeroth order solution to accurately approximate the

actual optimal control. However, we shall proceed with the perturbation

approach while recognizing that this is a significant test of the method. The

final conditions are shown in Table 1 for controls computed from expansions of

zero (linearized system) through sixth order.

TABLE I FINAL STATE ERRORS

Approximation xl(tf) x2(tf)
Order

0 110.00 168.86
1 4.164 6.859
2 0.3654 0.6124
3 -0.01957 -0.03416
4 -0.01001 -0.01677
5 0.0006371 0.001106
6 0.0002444 0.0003835
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The controls from the sixth-order expansion produces very accurate

results with errors substantially less than 0.04% for both coordinates. The

position and control profiles are shown in Figs. 2 and 3 respectively; each

trajectory is a smooth and continuous path to the origin. The excellent

convergence is achieved for this problem In which the nonlinear terms are of a

significant magnitude. In Ref. 7, we document analogous results for maneuvers

of a flexible spacecraft; we have achieved reliable convergence for a system

having order 42.

CONCLUSIONS

A procedure for solving nonlinear, open loop, optimal control problems

has been presented. In this approach, an asymptotic perturbation method is

applied, thereby obtaining a solution process without the traditional

dependence on iterative numerical methods. The nonlinear system is

"separated" into a set of nonhomogeneous, linear, optimal control problems

that may be solved sequentially. Upon combining the solutions of the

subproblems in a straightforward power series, an optimal control for the

nonlinear system is generated. This novel process for solving nonlinear

optimal control problems is a result of the marriage of a simple analytical

technique (the perturbation method) and a powerful numerical algorithm (the

matrix exponential).

Although the asymptotic perturbation method was conceived as a solution

process for weakly nonlinear problems, the method has demonstrated

extraordinary effectiveness when applied to many strongly nonlinear problems

such as the system presented in Case 3. Certainly, the perturbation method

will not produce accurate results for all nonlinear systems. However, the

family of nonlinear problems to which the method is effective is considerably

larger than we initially expected. We therefore anticipate that this
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asymptotic perturbation method will be found to be broadly applicable to a

large family of generally nonlinear problems, including higher dimensioned

systems.
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A QUASI-ANALYTICAL METHOD FOR COMPUTING
NONLINEAR ATTITUDE MANEUVER CONTROLS

1 2 3R.C. Thompson , J.L. Junkins , and J.D. Turner

A quasi-analytical method is presented for solving
nonlinear, open loop, optimal control problems.
Upon applying the most basic of the asymptotic
expansions from perturbation methods (the pedestrian
or power series expansion), the nonlinear control
problem is replaced by a sequence of linear, non-
homogeneous problems. In contrast to the usual
emphasis (in perturbation methods) upon analytical
solutions of the sequence of linear systems, we
show that this sequence of problems can be solved
sequentially using efficient numerical methods.
The nonhomogeneous terms are represented by a finite

Vi Fourier series, allowing the use of matrix expo-
nential algorithms due to Ward and Van Loan to be
used to solve the system at each order. In prin-
ciple, the order of the expansion may be extended
indefinitely, however numerical difficulties will
arise at some point. Historically, solutions to
nonlinear control problems have relied almost
exclusively on iteration methods (using one of
several available algorithms); however, the pertur-
bation method presented here often produces very
accurate solutions to nonlinear problems without

K.) iteration. The perturbation method is broadly
applicable to a variety of optimal control problems
including large degree of freedom systems. Numerical

examples of multi-axis attitude maneuvers of a rigid
spacecraft are presented.
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j OPTIMAL CONTROL FORMULATION

Consider a system governed by a nonlinear, vector

equation with initial and terminal boundary conditions of

.0 the form

z=Fz + DU + cp
(1)

z(t o ) = Z(tf) = 0

Kwhere z is an nxl state vector, U is an mxl vector of

controls, ep is an nxl vector containing all nonlinear

terms and e is a small dimensionless parameter. We note
that many systems require some algebraic manipulations

in order to represent the system in the form of Eq. (1).
For example, the system may require a transformation to

modal coordinates in order to produce an independent set
of equations. Furthermore, the state vector may be aug-

mented to contain "pseudo-state" variables such as the

control magnitude and control rate in order to determine
more realistic or desirable control profiles and (in the

case of flexible bodies) reduce spillover into the higher

frequency modes. (Ref. 1) If such an approach is taken,

then the vector U may not be the applied control but instead
will contain higher derivatives of the control variables.
Because the perturbation method that we present depends

upon a power series expansion, it is important to expand

any transcendental functions into a truncated Taylor's

series. Therefore, if a given system contains transcen-
dental functions, we must start with an approximation of

that system as a conseqLence of this procedure, where of

course the accuracy of the approximation will depend upon

the number of terms included in the formulation.

We seek the control trajectory that minimizes the

*functional

= 1 TS + f (+z + uT RU)dt (2)

subject to the condition that Eq. (1) is satisfied; where
R and S are positive definite, diagonal weight matrices,

and Q is a symmetric, positive semi-definite weight matrix.

The Hamiltonian, formed from the integrand of Eq. (2) and

the system equations is given by

1IzT uT T

H ( Qz + T RU) + )T(Fz + DI + EO) (3)
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where the costates, designated as X, are a set of n
undetermined Lagrange multipliers. Pontryagin's necessary
conditions for determining the optimal control yield the
three equations

a-- Fz + DU + cp (4)

aH -Qz - FTX -[ T X (5)
I az--_

RU + D TX (6)

and the boundary condition _(tf) Sz(tf).

Solving Eq. (6) for U and substituting into Eq. (4)
reduces the problem of determining the optimal control to
solving two coupled, nonlinear, first-order ordinary differ-
ential equations. The two equations may then be combined by
defining the augmented state/costate vector, X, such that

= AX + c{NLT} (7)

where

[z XT]T 2n x 1

F -DR

A 2nT  x 2n

P

fNLTj = ap 2n x 1

dZ -

We have now reduced the optimal control problem to a Two-

Point Boundary Value Problem with split boundary conditions

on z and the condition that X(tf) = Sz(tf ). As a consequence
of the existence of the vector of nonTinear terms, designated
(NLT}, the problem given bv Eq. (7) is analytically intract-
able, and we would ordinarily rely upon iterative methods to
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complete the solution. However, we wish to construct a
quasi-analytical approach that eliminates the reliance upon
iteration.

THE PEDESTRIAN EXPANSION

For a weakly nonlinear system, as indicated by the

"bookkeeping" term C, it is constructive to apply a sLraight-
fo. ard power series expansion to produce an approximate

solution to the problem. (Ref. 3) Let the solution to

Eq. (7) be given by

X(t) - X (t) + EXl(t) + C2X2(t) + ... (8)

For small nonlinearities, and consequently small c, the
series will produce accurate results and the accuracy will

improve as the nonlinearities approach zero. Substituting
Eq. (8) into Eq. (7) gives

+ El +E 2 2 + O(s = AX + cAX + E2AX + NLTI(X
-0 -1 -2 -0 -1 -2 t{L 1(X 0)

+ e 2 {NLT (X 0,XI) + O(E (

where the nonlinear terms, {NLT.}, have been expanded in a

similar power series and the functional dependence of each
term on the expansion variables (X.) is indicated in each

term. Equating like powers of c yields the series of equa-
t ions

x = AX 0  (10)

X AX + {NLT (Xo)} (11)

-2 -2 1 -0O-"7' _2 -A2 + {NLT 2 (X 0 ,X 1 )} (12)

For illustrative purposes, we have included only the terms

through second order; however the series could be continued
to higher orders if necessary to achieve the precision appro-
priate for a specific problem. In Ref [8], we show several

examples wherein 5th and 6th order expansions were routinely
computed; analytical perturbation solutions above third order

are very rare. The same procedure, when applied to the
boundary conditions yields
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So to) = x (t ) = t-t (13)

X0 00 ) t(t0) of ,{0(tf

Xi(t - .it - f iilZ ,3,...ii to  i tf 14)

and we recall that the final conditions of the states and
costates are related at each order by X (tf) - Szi(tf).
Note that the nonhomogeneous terms in tAe ith equation of
Eqs. (10-12) are dependent only upon the preceeding i-I
expansion variables. Therefore, the nonhomogeneous term
in each equation constitutes a known function of time and
Eqs. (10-12) can be solved sequentially. The perturbation
method has, as usual, replaced the original nonlinear prob-
lem with a series of linear, nonhomogeneous problems.

The solution of Eqs. (10-12) can be shown to be

A t"tAt -ATd T d i ,1 2....( 5
Xi(t) = e [Xi(0) + f1 e d(T)d] i=O1,2 . (15)-1 -i -i . ..

0

where

00

di(T) ={NLT.) i=1,2,... (16)

and where we have assumed t =0 without loss of generality.
5Evaluating the integral in Pq. (15) may be accomplished in

any number of ways. Direct numerical integration could be
used but a more attractive method would be to use a finite
Fourier series approximation of the integrand (or some other
orthogonal series) and then integrate the series term by
term. The latter method will provide us with a model of
tile integral as a continuous function of time, an advantage
when calculating the trajectories of the expansion variables.
Another alternative, and perhaps the most elegant, is to use
a matrix exponential to calculate the entire integral shown
in Eq. (15).

P." The matrix exponential method requires the nonlinear

terms, d (T), to be represented by a continuous function of
time in exponential formz. Since we have no closed form

- expression for the nonlinear terms, we can at best generate
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a large set (k) of data points which are sampled values of
the nonhomogeneous terms. A finite Four~er series, which
can always be put in exponential form, is used as the
continuous time representation, and is given by

r
d(t) = b 0 + E a i sin iw t + b. cos iW t (16)

To calculate the series coefficients, we use a least squares
fit of the series to the sampled data sets. It can be shown
that the Fourier series of the jth element of the ith non-
linear term may be given by

Sc. = d. (17)
-3 -j

where the matrix S contains the trigonometric functions
evaluated at the sample times, c. contains the unknown
series coefficients, and d. contains the sampled data of
the jth element of di(t), as given by

d. = [d (0) d (6t) d (2At) ... dj(kt)]T (18)
-

where At = t /k The unknown coefficients are then deter-
mined from t~e least squares approximation.

C. = (dTB) T . (19)

Note that w'th appropriate sample points (symmetric about
W Lt = 7) 6 B is diagonal and the inverse is trivial.
Ayternatively, we can develop these coefficients from a
discrete Fourier transform. Proceeding element by element
(j=1,2,3,...,2n) through the vector of nonlinear terms,
each element is represented by a finite Fourier series.
The collection of series representations may then be put

into the form

d.(t) = G.e L0 (20)

where the jth row of G. contains the series coefficients
for the jth element of the nonlinear term, and the matrix,

Q2, is defined to be

= Block Diag [0 QI 2 " ' '

66

N



a.

P. where

0 -

z: ( w )2 0 z 1,2,3 ... r

and E.0 is a constant vector used to "separate" the trigono-
metric functions calculated in Eq. (20).

At this point, we have a continuous time represen-
tation of the nonlinear term in the form of a matrix
exponential. We now employ Van Loan's identity (Ref. 4)
which will produce the integral in Eq. (15) from a matrix
exponential. We shall define

: -Y. =(21a)1: 0 a
.Y i t I (t ) 2 i ( t )

[ (21b)
'" 0 3(t)]

where we note that € (t) is different for each X.. The
definitions of the state transition matrices () are
(from Van Loan)

1(t) At22
•¢ 1 (t) = e (22a)

" At

(t) = e eATG.eT dT (22b)

I 3 (t) = e (22c)

We may then rewrite Eq. (15) using the definitions from
Eq. (22) to get

Xi(t) = (t)X i(0) + I2i(t)go (23)

In order to use Eq. (23) to produce the trajectory of X ,
we must first determine the n unknown initial conditions
of X. (i.e. the initial costates X.)

-1 -I"
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j SOLVING THE INITIAL COSTATES

We have noted that the costate boundary condition

resulting from Pontryagin's principle is X.(tf) - Szi(tf).
Until now, this boundary condition has not been used,

however, it will be instrumental in completing the imme-
diate task of solving for the initial costates. Evaluating
Eq. (23) at t-tf and substituting the boundary condition
into the result gives

(tft + 'p21(tf)&
f) -sr + i(tf). (24)

Szi (tf x. J(
To simplify the notation, let us partition the components
of Eq. (24) as

*1 (t) 1 (tf)
1 1(tf) = (25a)

121 22 J

(if ( t f))
2 i ( t  )R 0 =2 5 b

Sf 12i(t f)

Substituting Eq. (25) into Eq. (24) leads to the two coupled
algebraic equations

, it )
= ¢I1 (t) iO 12Li(tf (tf)z.(O) + 1 (tf)i(O) + i(tf) (26)

.. Sif ) = (21 )z. (0) + 22 _

Sz (t (tf -i ( (tf)xi(0) + P2i(tf) (27)

where X.(0) is the only unknown term. Finally, multiplying
Eq. (21 by S, substituting into Eq. (27), and collecting

* .the terms produces

22 12 11 21
1 (f) - S¢ (tf) ].i(0) = [S% (tf) - '1 (tf f i(O)

(28)
+ S1P1.(t - q'2 i(tf)
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By using any appropriate algorithm, we can solve the linear,

algebraic system given by Eq. (28). Substituting this solu-
tion into Eq. (23), we now have the solution for Xi(t).

RECURSIVE SOLUTION OF THE STATE TRAJECTORIES

We have found, in Eq. (23), the solution for a given
perturbation expansion X.(t). In order to proceed to the
next order (i+l), we neeA a sampled data set of the trajec-
tories of X i(t). This will permit efficient calculation

of the Fourier series representation of the inhomogeneous
terms. To duplicate the procedure outlined above for each
value of t would of course be far too costly in terms of
time and computational efficiency. However, an alternative
exists as a result of the particular exponential property

A(k+l)t e AAt AkAt (29)e =e e (9

By making extensive use of the property given by Eq. (29),
we can produce a recursive solution of Eq. (23) in which
each data point (for a small, fixed time interval At) is
found by simple matrix multiplication and addition.

It can be shown that applying the property in Eq. (29)
to the definitions in Eq. (21b) gives

(k+=)t] = 1l(At)t1(k~t) (30a)

S2i[(k+l)Lt] = Il(Lt) 2i (kbt) + 4 2i(At)o 3 (kAt) (30b)2i 2i2i

' 3 [(k+)L t ] = 3 ( At) (kAt) (30c)

where i(0)=I, €2i(0)=0  and D3(0) =I. Now let us define
the three vectors v. to be

4. ,. --_

• 4

v 'ii v (k+l)At] = 0 [(k+l)At]Xi1(0) (31a)

.%, 2i [(k+ l)Lt ] = 2i [(k+ )Lt] o (31b)

v', _3i [(k+l)Lt]1 = ( 3 [(k+l)At]jo (31c)

Evaluating Eq. (23) at t=[(k+I)At], substituting Eq. (31)
into the result, and by substituting Eq. (31) into Eq. (30)
we get
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X [(k+1)Lt] =v [(k+)AtI +v t2i(k+1)3t] 32a

-i(k+)At] =P 1.(At)v 1 (kAt), v. (0) = Xi(O) (32b)

y 2 i[(k+l)At] - 1 (At)v21(k~t)

(32c)
+ 2i (At)v3i(kAt) v 2 i(

0 ) =0

L31 (k+ l )At ]  - P3(At)v3i(k A t), v 3 (0) =' o (32d)

We can see by Eq. (32) that we need only to calculate
the matrix exponential given by Eq. (21) once in order to
implement this recursive solution. Clearly then, the solu-
tion of each order requires the calculation of the matrix
exponential twice; once at t=tf to solve for the initial
costates and once at t=At to set up the recursive procedure.
When the solution of each order is completed, the variables
are combined according to Eq. (8) to produce the open loop
optimal trajectories. We again stress the fact that the
solution to the nonlinear optimal control problem has been
produced by solving a sequence of strictly linear, constant
coefficient subproblems without resorting to any iterative
techniques. We shall illustrate the effectiveness of the
perturbation method with numerical examples of a multi-
axial attitude control of a rigid spacecraft.

SPACECRAFT EQUATIONS OF MOTION

The spacecraft configuration for a multi-axial rigid
body is immaterial, but we §hall assume that we have selected
a body fixed set of axes, {b i, located a the mass center
of the body and aligned with the principal axes of the space-
craft. Describing the orientation of the body fixed frame
relative to the inertial frame, (N.), by a set of 1-2-3
Euler angles (4,Oi), we can show-hat the angular velocity
of the spacecraft in body fixed axes is given by

W W b l + W 2 b2 + w3-3 (33)

where

"1= cecP + osp c( ) = cos( )

W2 6cp - $cos s( ) sin( )

3 3 +
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Inverting these kinematic equations, we obtain the Euler
angle rates as

W I lp/cO - W2sip/ce (34a)

e - 1 S + W2 cip (34b)

-W1 cpsB/ce + W2 s~se/c
e + w 3 (34c)

As indicated previously, we must expand the trigonometric

functions in a Taylor's series. In doing so, we shall
neglect all quartic and higher powers of the variables,
resulting in the approximate nonlinear equations

= w1 + W 1 (e 2/2 - * 2/2) - w 2  (35)

0 2 + W I - W 2
2 /2 (36)

W 3 - I + W2 6 (37)

We can show that these equations are adequate to describe

maneuvers of <200 in any/all axes. The spacecraft is to
be controlled by three external control torques (u., i=1,2,3)
applied about the respective principal axes. Therefore

the dynamics of the multi-axial motion is defined by Euler's

equations as

1 = U / 1 (1 2 -1 3 )w 2w 3 /11  
(38)

W 2 = u 2 /1 2 + (I 3 -11 )w1W 3 /1 2  (39)
.

w 3  u 3/13 + (I 1 -1 2 ) IW 2 /1 3  (40)

where I. is the ith principal inertia. The motion of the1

spacecraft is governed by Eqs. (35-40) and our task is to
find the control torques required to drive the spacecraft

to a final state of zero attitude and zero angular velocity
from reasonable arbitrary initial conditions (defining the

fixed target orientation to be the inertial frame).
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In the optimal control formulation, we shall include
the control torques and their first derivatives in the
state vector. By doing so, we define our pseudo-control
g = u and as such, we shall be penaliziihg, in the perform-
ance functional, the integral norm of the "control accel-
erations". The resulting control profiles will then have
prescribed (usually zero) magnitude and slope at the
initiation and completion of the maneuver. Therefore, the
augmented state and control vectors are defined to be

z [0 e 2 3 ul u2 u U u u3T (41)

1 2 3u 1  u 2  3]T

We can then put Eqs. (35-40) into the matrix form indicated
by Eq. (1), and follow the procedure outlined in the develop-
ment of the perturbation method.

NUMERICAL EXAMPLES

We demonstrate how well the perturbation method
performed in the following numerical examples by summarizing
results from integrations of the exact equations of motion
(Eq. (34) and Eqs. (38-40) ), using the optimal controls
generated by the perturbation method, and comparing the
final conditions of the integrated equations with the desired
final conditions. Repeating this procedure for solutions of
different orders in the expansion given by Eq-. (8) demon-

*strates how the accuracy is improved with each order.

CASE 1

For the first example, a small angle, rest-to-rest
maneuver in 2 seconds is performed with the perturbation
expansion carried to second order. The initial conditions
are

= 0.I rad 01 = 0

e = 0.05 rad 02 = 0

= 0.15 rad 03 = 0

We select the weight matrices Q=O, R=I, and S=I.E20 x I].
The large value of the matrix S serves as a requirement
that the final conditions be rigidly enforced. In this
problem, we are penalizing only the "control accelcr;'tions"
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and the final state errors. Since this is a small angle

maneuver, we would expect the solution to be accurate, since

the Taylor's series approximation made in deriving Eqs. (35-37)
will be very accurate. The results of the integration of the
equations of motion are shown in Table 1 for each order. We
can see that the zero order solution alone is quite precise,
as we suspected, and that by the second order solution, we
have obtained nearly two orders of magnitude improvement

toward the final conditions. This'level of precision is
probably all one would require for open loop maneuver controls,
since (i) modeling errors and implementation errors are always
present, (ii) if high precision is required, we would always
employ a terminal feedback control for precise target acqui-
sition. Clearly, the perturbation method is providing an
acceptable degree of accuracy for this open loop problem.

TABLE 1 FINAL STATE ERRORS

Order Approximation

0 1 2

4 -1.l1E-3 -8.97E-5 -3.17E-4

e 3.53E-3 2.87E-4 -7.11E-6

1.54E-3 -5.72E-5 -1.08E-5

W1 -4.48E-3 7.22E-4 4.30E-5

W2 1.12E-2 5.78E-4 -4.48E-5

W3 -5.61E-4 7.72E-5 9.77E-6

CASE 2

In this example we shall challenge the perturbation
method by increasing the initial attitude to larger angles
and by letting the spacecraft be tumbling initially. As

in the previous example, we seek the optimal controls that
will drive the system to a zero attitude at rest with a
maneuver time of 2 sec. The initial conditions for this
case are

4' 0.25 rad = 0.4 rad/sec

0 0.10 rad 2 = 0.2 rad/sec

= 0.40 rad W 3 = 1.0 rad/sec
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The weight matrices are given the same values as in Case 1.
In like manner, the results of the perturbation solution to
order 2 are summarized in Table 2. We note immediately that
the zero order solution is ineffective at performing the
detumbling maneuver and may actually aggravate the motion of
the spacecraft. However, the first and second order approxi-
mations converge quickly to produce acceptable final state
errors and demonstrate the effectiveness of the perturbation
method. We would conclude that the control trajectories
produced by the first or second order approximations are
indeed adequate approximations of the open loop optimal
controls which we wished to determine. The trajectories
of the Euler angles, angular velocity, and controls for
the second order solution are shown in Figs. (1-3) respec-
tively.

TABLE 2 FINAL STATE ERRORS

Order Approximation

0 1 2

4)-0.218 -0 .430E-1 -0.184E-1

e 0.315 -0.138E-1 -0.435E-3

0.679E-1 -0.123E-2 0.142E-2

Wl -O.104E-1 0.157E-1 0.740E-2

W2 0.434 0.218E-1 -0.152E-1

W3 0.224E-2 0.147E-2 0.161E-2

CONCLUSIONS

A procedure for solving nonlinear, open loop, optimal
control problems has been presented. In this approach,
an asymptotic perturbation method is applied to the problem

vthereby eliminating the traditional dependence on iterative
numerical methods. The nonlinear system is "separated"
into a set of nonhomogeneous, linear, optimal control prob-
lems that may be solved sequentially as "independent"
systems. Upon combining the solutions of the subproblems
in a straightforward power series, an optimal control for
the nonlinear system is generated. This novel process for
solving nonlinear optimal control problems is a result of
the marriage of a sipple analytical technique (the pertur-
bation method) and a 2owerful numerical algorithm (the
matrix exponential).
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We have applied the perturbation method to several
classes of problems (Ref. 7,8) and have found it to be
most effective for a large family of nonlinear problems,
including large degree of freedom systems. The material
presented in this paper is a further evaluation of the

" ~method in its present format regarding nonlinear three
dimension spacecraft control. We are continuing to improve
the method in an effort to achieve greater numerical effi-
ciency while simultaneously applying the approach to a
greater number and wider variety of nonlinear problems.
Higher order solutions to common problems can be completed

-i quickly and with minimal programming effort in a manner
that cannot be matched by purely analytical methods, yet
with an accuracy that is consistent with other numerical
methods. We anticipate that the quasi-analytical pertur-
bation method will prove the most useful approach for
solving many, nonlinear problems.
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Identification of Vibrating Flexible Structures

S. Rajaram* and J.L. Junkinst
Virginia Polytechnic Institute and State Unitersity, Blacksburg, VirginiaAi

This paper presents novel identification schemes to determine model parameters of sibraling structures. A
time-domain identification method using transient response is discussed first. Next, a stead y-sale response
method using nonresonant harmonic excitations is considered. An especiall% attractive method for uniquely
identifying the parameters of a structure using both free and forced response is also discussed. Numerical results
show that the methods are relatively immune to the presence of damping and many Iov.frequenc mode, with

repeated or closely spaced frequencies.

Introduction definite mass matrix, C the n x n symmetric positive

A CTIVE control of large space structures (LSS) semidefinite damping matrix, and K the n xn s.mmetric
necessitates a sufficiently accurate estimate of the positive semidefinite stiffness matrix. Dot, denote differentia-

parameters so that control laws can be tuned on-orbit to en- tion with respect to time.
sure stability and permit leps control effort to be expended. It is assumed that a LSS can be satisfactorily modeled in the
Algorithms for design of insensitive or adaptive controls are form given by Eq. (I). Our objective herein is to identifs the
not attractive due to the large number of degrees of freedom poorly knovn coefficient matrices Al, C. and K or some
to be controlled. In fact. for most LSS application, the only parameterication therefore, e.g., the system eigensalues and
feasible approach appears to be: I) identify the structural eigenectors. Equation (I) can be rewritten as
parameters then 2) use this information to adjust the gains.
and perhaps 3) use adaptive methods to change a small M
number of critical parameters in real time. This paper ad-
dresses issue I above. Ii' (I) x (I) x'(t) C =fl(t) (2)

Transient Response Identification Method A I
Many structural modal identification methods are available T denotes the matrix transpose operation.

which extract modal characteristics, i.e., natural frequencies Now, consider an idealied measurement proces ssherein
and mode shapes from a set of resonant steady-state responses t o s, , coi a celea ti on a nd f rce erein
due to a large number of harmonic excitations. These method, the position, velocity acceleration, and forces are measured at
encounter analytical and numerical difficulties when the discrete instants, say ,t.,,,. Upon writing it measure-
system frequencies are closely spaced and the "single mode ment equations (m3n) identical to Eq. (2). one for each
resonant response" assumption is used. Also, the time re- measurement time, the resulting matrix equations can be vrit-

quired to achieve steady state may be prohibitively long for ten as

lightly damped, low-frequency structures. Time-domain
techniques' . for structural identification were first proposed ZP= U1 (3)
by Ibrahim. Ibrahim's time-domain (ITD) method is a modal
identification scheme. The ITD method has been successfull where Z is an rn y 3n coefficient matrix, sshosej ros, contains

applied to reduce measurements from several laboratory ex- measurement% of the sytem response at time 1,:

periments. however, this method has been found to lack
reliable robustness. In some applications, rank deficient linear jth roy, of / Ii' (t,)x' (,)x' (t,) (4)
systems are encountered. Recently, Juang and Papa' have
developed a more robust time-domain modal identification Lis am n matris containing the follosing forcing functions:
method this method is based upon judicious use of singular jth ross of U -f' (t(
value decomposition.

Identification in Configuration Space P [i C Kl (6)
Consider a vibratinj structure governed by the following P is a n x n matrix containing the unknossn mass, damping,

linear matrix differential equation: and ,tiffnes parameters.

Since the number of elements in each column of P is in and
Mi+ Cx+Kx=f (I) m>3n, Eq. (3) overdetermines the columns of P. The leaNt-

where x is the n x I configuration vector of physical displace- squares solution for P is given as
ment, fthe n x I force vector, M the n x n symmetric positive P LU (7)

Received June 29. 1984; rcsimon received Oct. 9. 1984 ( opyright where the least-square,, operator is formall.
,c 1985 by John I . Junkin. Published by the American Insitutc of
Aeronautics and Astronautic, Inc., wi h permission. i. = (ZtZ) '7' (8)

'Graduate Research Assistant, l)epartment of 'ngincering Science:
and Mechanics; currently Member Technical Staff. II HA(O. Ithaca.
N.Y. For large systems, of course, the explicit insersion should be

tProfesor. Department of Engineering Science and Mechanics,. avoided in favor of the Q-R reduction, Cholesk, decomposNi.
Associate Iellow AIAA. tion, or a singular value decomposition approach for in-
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creased efficiency and robustness.' The computations subse- The matrices M 'K. M 'C, and B, can be determined.
quently summarized in this paper were done using the Q-R following a procedure analogous to that outlined presiouI.
algorithm. The only theoretical requirement is that the least- for configuration space identification. It is evident from Lq.
squares coefficient matrix Z have full rank (3n). Physically, (14) that the least-squares coefficient matrix includes the force
this rank condition can be achieved only if all degrees of vector. Immediately, it can be inferred that the force vector
freedom participate in the response. Hence, a fundamental re- should form an independent set for unique identification of
quirement for identifying the structure is that the excitation the system parameters. This statement holds true for con-
should have sufficient energy and frequency content to excite figuration space identification also. It can be observed that x
the higher mnodes of the system. Qualitatively, it is also evident in the least-squares coefficient matrix, viz., Eq. (3), become,.
that the actuator locations and phase distribution of the ac- independent of other variables only through the forcing
tuator input are likely to be important. Thus, the mass, damp- functions.
ing. and stiffness matrices of the structure can be identified, at
least in principle. The method is obviously straightforward.I However, it requires that the number of forces equal the order Identification Using Orthogonal Polynominal
of the system. Also, acceleration, velocity, and displacement The measurement of acceleration, velocity, and displace-
are to be measured at all of the degrees of freedom. These re- ment at all degrees of freedom, as required by the methods
quirements pose obsious practical difficulties. It is shown in presented earlier, poses obvious practical difficulties. To ob-
Ref. 7 that, in order to use a smaller number of forces than the tai partial relief from this requirement, an orthogonal iden-
number of degrees of freedom of the system, a priori tification scheme is proposed. Orthogonal polynomials can be
knowledge of the mass matrix is required. It should be noted used to represent completely any function to a required degree
that the method, as presented above, does not require or ex- of accuracy.'
ploit the symmetry of the system matrices and, hence, is ap- Consider the lower portion of the state equations, %ii.. Eq.
plicable to a general dynamic system involving gyroscopic and (13). Also, it is assumed that the accelerations and forces ate
circulatory forces.' It is also evident that the size of the linear measured at discrete instants of time. Then they can be ex-
systems which must be solved is 3n. Therefore, unless the panded using orthogonal polynomials such as Chebshe%,
matrices do, in fact, possess special properties, it is anticipated Legendre, etc.
that practical computational restrictions will require n< 50 for
this approach. Of course, the heavy redundancy implicit in M, i = P, T(t) (15)
C. and K as descriptions of distributed mass, damping, and
stiffness often can be eliminated in terms of fewer physical where P, is a rectangular coefficient matrix and
parameters, but the estimation process then must be coupled
wsith the structural modeling (e.g., finite element) process. T(t) = T(t) T, (t).. T, (t) 1 (16)

Identification in State Space is a column vector consisting of orthogonal polynomials. The

For control applications, the system dynamics is expressed intergral of T,(t) can be expressed via a recurrence relation-

in state equations. Introducing the "2n"-dminensional state ship involving T,_ and T, ,. Integrating Eq. (15)

vector .= PT(t) 4c' =y C' (17)

gt - [xI (t) x, (t) ] (9) Integrating further

Equation (I) can be vritten as x = PT(t) 4 C' + C" =)'+ C' C" (18)

hg A Bf (10) where P, P, and P, are it x N matrices containing the espan-Us here sion coefficients. By substituting Eqs. (15), (17). and (181 into
0 I Eq. (13), the least-squares problem can be constructed a,

.. A = (ll

, -At 1A -M '( -(M /'K)

is the plant dynamic matrix and -(M 'C) 1

) i V (t) Vy'(t) f[ (t) 1 Il B x (t ) (19)
~B D l12

is the control distribution matrix. The structtre of B is dcpen- d!

dent upon tpc and location ol the force inputs. Alien all
degrees of freedom are not excitcd, tlie Iot cc .c,tor conlas dii -, 'Ac' (20)
zero entries and B %%ill be a 2n , n ) rectangulat twitri\
-,here n, is the number of excitation,,. The unktnon
parameters to be identified are the elements of inatricc A and d. -if A'c" -. 'Cc' (21)

Consider the loser partition of Eq. (101
Vl 'A. if 'C. D1. d. and d, can be estimated from -q. (191

x (t) - M ' Axt) -iAf 'xt) . I) fIt) (131) c' and c" can he deternimed using E-qs. (20) and ;211. Thus.
the nunbet oI n cash uremenis arC reduced b\ a I .ictot of a and

I quation 13) can be \\rtten a, the initial displacetune t atid ,clocit \ctors,. uuall, the
eqUlihbrinii positions O) th' structure, are also estiatled alotnc

- A ' I silth lie parameters, it is also possible to use \elocitt, oI
displacement measurements alone. Although ses eral ot

X, IXt) Ix' t) 51 (t)'t) I - Al ()' (141 thogonal pol.nolnials exists, the use of (heb. she.
polsnomials hase found a \Aidc application' in solhing lineal
and nonlinca" difltcciial equiatons. Since c are conceried
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with the inverse problem (i.e.. given the response, the best unnecessary for the success of the identification algorithm,.
estimate of the system's parameters is to be determined), Three excitation types were considered: I) harmonic, 2) bang-
Chebyshev polynomials seem to be the natural choice. bang (rectangular wave), and 3) frequency swept harmonic

(harmonic excitations with time-varying frequency). Har-
Numerical Results for Identification monic excitations yield good results for the spring-mass

from Transient Free Response damper and cantilever beam. For the plane truss, bang-bang
Four specific linear systems are considered as representatise and frequency swept harmonic excitations are useful. Or-

examples; a spring-mass damper system (Fig. I), a plane truss thogonal polynomial identification of the plane tru,, with
(Fig. 2), a cantileer beam (Fig. 3). and a rectangular mem- bang-bang excitation did not recover the parameters ,er% wkell.
brane (Fig. 4) are considered to study the effects of I) repeated The orthogonal polynomials are unable to represent the ac-
low frequencies and rigid-body modes, 2) damping, 3) choice celerations satisfactorily. However, with frequency swept bar-
of excitation and number of excitations vs degrees of freedom, monic excitation, the orthogonal identifier recoered all
4) excitation frequency vs system natural frequency, 5) parameters accurately. Thus, the orthogonal identification
measurement errors, measurement duration, and sampling in- scheme apparently works best with smooth and continuous c\-
terval, and 6) model truncation errors. Synthetic measured citations. The number of excitations required for the iden-

' data are generated for each case using known parameter tification of spring-mass damper and cantileer beam can be

values. Table I gies the undamped eigenvalues of the ex- as fewk as one. For the plane truss, a minimum of fise escita-
amples. The proposed identification schemes performed very tions are needed.
well for all four examples. The results are summarized belor. Upon varying the frequency of excitation over the range of

the system natural frequencies, no significant degradation in
The plane truss example, as can be seen from Table I, has the performance of the algorithm is obsered. Measurement

three repeated eigenvalues and three zero eigenvalues cor- errors introduce estimate errors, of course. The effect of
responding to the rigid-body modes. Arbitrary viscous damp- discrepancies between commanded and realized excitation, is
ing is included in the first and second example problems. It is also studied by including noise in the excitations.
found that the identification algorithms recovered the system The cantilever beam and a simply supported membrane are
matrices without any difficulty. It is clear that restrictive chosen to illustrate the effect of model truncation. These are
assumptions such as proportional or negligible damping are distributed systems; we are interested in obtaining a discrete

representation. The response of the cantilever beam is
obtained by using the eigenfunctions and assuming that six

F I x, I F 2 X2F, x modes participate in the response. Hence, a sixth-order model
f-,, is obtained first. The model identified using either a bang-

ks.. w,1 bang or harmonic excitation is the same. A reduced-order
.. model (fourth order) is identified next. Table 2 compares the

,c Co¢ exact eigenvalues with those obtained from identified models.

ig .";, k k . . % : 36 N/,! rn(x). El(-)
M L K ~ k j

2 -1 0 B

2 = 0 0 0 0 0

-- ,_ c ~the bending ,,tiffness , 495. N/M2. 1. the length. 3.0 m; . ,iino
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22-
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It is also noted that the harmonic excitation resulted in a or
model that fits the measured acceleration fairly %%ell. This is
significant since accelerometers are the most commonly used f S ,I) =SsinwtI + CAcosAI k 1,2.m (22)
sensors for vibration measurement. The bang-bang excitation,
being rich in harmonic content, is able to excite the higher S, and CA are the amplitudes of the sine and cosine com-
modes considerably and thus affects the identification of the ponents of the excitation. The steady-state response of the
reduced-order model. Table 3 gives the results for the structure then can be written as

membrane.
-, x(t)=AsinwAt+Bcoswt k 2 .... ( (23)

* Identification Using Nonresonant
Harmonic Excitations The structure is subjected to "in" harmonic excitations at fre-

The use of harmonic excitations for the identification of quencies u/, . .,,,. The excitation frequencies can be
vibrating structures have received the attention of several chosen arbitrarily and need noi coincide with the system fre-
investigators.' "4 Raney ' used such a scheme to successfully quencies. For each excitation frequency "w,," the steady-
identify the effective masses. stiffnesses, and damping for a state amplitudes A, and B, of the displacement are measured.
lightl damped structure hasing widely separated modes. the Using Eqs. (22) and (23) in Eq. (2), we form the matrix
structures studied were 1,10- and 1/40-scale models of the equation
Saturn launch %ehicle. Seseral methods are suggested' "4 to ex-
tract the normal modes from measured response. However, ZP= U (24)
the use of normal modes is questionable hen the damping in
the system is not a proportional type. The methods using reso- where P is the same as in Eq. (6).
nant harmonic excitations, as mentioned earlier, encounter
both experimental and computational problems, when the kth ros ofZ=[-WjA/ -ZB/ .4I (25)
system frequencies are closely spaced. A nosel identification
scheme using nonresonant harmonic excitations is presented in (k + in)th row of Z= [ -w2 B w,, I B, 1 (26)
this section. The proposed scheme differs significantly from
sescral of the existing methods which generally use resonant kth row of U= S7 (27)
harmonic response to obtain the model parameters. The
method requires that the structure be damped: the damping, (k + m)th ro%% of U= C7 (28)
ho%%e~er, call be arbitrar% %,scou% dampin-d

hossscr canbe rbitar~sisc usdampng.For tn>3,u/2, Eq. (24) represents an oserdetermined system

Configuration Space Identification of equations. The least-squares solution for P is gisen

Once again consider Eq. (I). Let the excitationf(t) be given formally as
as

u,,sin(,e,t+o,) P= (Zrz) 'ZlU (29)

a-, sin(,, t o., ) Thus, system matrices M, C, and K can be identified directly
from steady-state response. The same response data calt be

f, (t) = -used to identify the system in state space. Also, the amplitudes
of displacement must be measured at every degree of freedom.
Alternatisely, amplitudes of accelerations can be used. In that

a,. sin(.,t * ,, ) case, Eqs. (25) and (26) become

kth row ofZ = [AI BI1, -. 4//] (30)
lahle 2 Comparison of eigenamalue% for canIile er beam

(k ,n)thro\ of Z= 1B1 -41/, -B I (31)
I igemalue obtiimned from

I outl h-mt i L- er Illodel
s1t\l-ordef .4, and B, are the amplitudes of acceleration. It is assumed in

I\a,. modcl Harnioni, tIing-hang the subsequent discussions that displacement amplitudes are

measured and. hence, consider Eqs. (25) and (26) only.
. i5.1611

0' I5 1664 31.2092 36.)591
98 4; 1  9 4q24 9.3344 9S 3421) State-Space Identification
92.9246 192.9292 192.A283 192,937-3 Consider once again Eq. (13), which, using Eqs. (22) and

31 91)2 31$ i ll (23), heconlm ,,
4t6,41X6 415 99si

Table .3 comparion of eimen'aluc% for rectangular membrane i (,) I ' R,,S/,

ob.en fesrhained~ ffrii8 i 4 '

I outth. orde model
si\h-ordcr r ',

I'\acr modcl Harnonlic liang -alt.8 ' (3)

21 ()2 21 (M5) 20.49'6 21 22 t

41 91 1 4 1 921)1 42 I'0 7  41 904 [quation (32) can b solsed \ia least squares to obtain 'it .

21 t '$i 2t 1161 21 42W' 1 14114 A/ (, and 0_ It should he noted that the amplitdes of the
42 IMg 41 96)2 exciiations dircitls enter into the least-squarcs coefficient
21 466 21 445 21 4256' 34.55t$) matri. Hence. the\ should form ati independent Net. This is
4..01 4 1191 achicsed b\ sarsing the phase ol the exctalion. i.e.. 0,_
4h2 ~tll 4l whl k o 0 t, .....,,, i Iq. (22) ill a nonltnear lashio . This is precisls

a 100

5,~



JULY-AUGUST 1985 IDENTIFICATION OF VIBRATING FLEXIBLE STRUCTURES 467

the reason for choosing the excitation of the form given by Eq. where
(22). The same requirement holds true for the configuration E: (n x n) modal matrix
space identification, since the amplitudes of A,, and B/1 can
be linearly independent only via the excitation amplitudes. 1: (n x n) identity matrix

Numerical Results for a Steady-State wl,,w ..... w,, are the natural frequencies. Note that in Lq,. (34)

Response Identification the eigenvectors are normalized with respect to the mass

Two numerical examples, viz., a spring-mass damper (Fig. matrix so that

I) and a plane truss (Fig. 2), are considered to study the effects
of several implementation issues such as I) closely spaced/ eM e , I = 1,2,...n n (35)

repeated frequencies and rigid-body modes, 2) number of ex-
citations, and 3) choice of excitation frequency. The results e, is the ith eigenvector (ith column of E). It %sill he assumed

are summarized under each of the items (1-3). that the measured modal matrix is square.

The plane truss example is used to study the effects of Berman" assumes an analytical mas, matrix if,. The

repeated frequencies and rigid-body modes. Thirty excitation measured eigenvectors are normalized with respect to if, so

frequencies were used ranging from 0.6 to 0.89 rad/s in steps that

of 0. I rad/s. All of the parameters are identified exactly in the
absence of measurement noise. Thus, the proposed scheme is eI.,e, = I i 1.2.
capable of identifying systems with closely spaced frequencies.
For state-space identification, the number of excitations can Letting AM be the desired correction matrix, Berman

be as low as three for the spring-mass damper system. minimizes the Euclidian norm
However, the plane truss requires a minimum of four
excitations. =IN 'AMIN '1 0K)

The excitation frequency was varied within the range of the
system's undamped natural frequencies. The authors con- subject to the constraint equation
sidered those cases where excitation frequencies were below
the lowest frequency of the structure and above the highest ErAE= I-,-. A A 1, 4 Alk

frequency of the structure. No significant degradation of the
identification scheme was observed, thus validating the fact where m, = E,'Al1 ,E is a nondiagonal matrix having unit% as

that the excitation frequencies can be chosen fairly arbitrarily, diagonal elements. Choosing N= A, as the %%eight matrix.
Berman obtains

Identification Using Free- and AM= M, Em- I (I-m,)m. 'n . (38)
Forced-Response Data

A Identification of mass and stiffness matrices from model It can be seen from Eq. (38) that AM is symmetrical and deter-

test results has been reported by several authors. The objective mined to satisfy the orthogonality relations. Ho\weer. one can
of these identification schemes is to modify an a priori mass or obtain different "AM"s depending upon the choice of Al,.
stiffness matrix so that measured eigenvalues and eigenvectors Also, the decision to ininirnize (, whil re.sonabhle. is neier-
agree with those of the analytical model. Berman," " using a theless arbitrary.
minimization procedure, developed a noniterative scheme It is evident that the resulting mass and stiffness matrice,
based on the orthogonality relationships of eigenvectors for are not unique. Subsequently, this truth %% ill be illustrated %sith

computing a "nearest neighbor" update of the mass matrix, a simple numerical example. Hence, it is concluded that in
Following Berman's approach, Wei" developed a related order to determine the system matrices uniquely. some more
method for correcting the stiffness matrix. Chen and Wada"' conditions in addition to the (necessary but not sufficient) or-
discuss an interactive system parameter refinement procedure, thogonality conditions must be satistied. These additional
employing the Jacobian matrix (consisting of the derivatives conditions can be readily obtained from the equations of nio-
of eigenvalues and eigcnvectors with respect to system tion. The free-response data can be used to determine the
parameters). Recently. Chen et al." applied a first-order eigenvalues and eigenvectors of the system. The estimated
matrix perturbation approach to identify the mass and stiff- modal data then can be used in conjunction skith the forced-
ness matrices. Other related approaches can be found in Refs. response data to uniquel identify the system matrices.
21 and 22.

Free-response data are used herein to estimate the eigen-
values and eigenvectors of the system. Using orthogonality Identification of Eigenvalues and Eigenvectors:
conditions, the matrices equal to system matrices multiplied Rajaram and Junkins' Approach
by unknown scale factors are determined initially. These scale A system described b. Eq. (33) %ill be considered. The
factors are then uniquely estimated by subjecting the system to modal coordinate transformation is introduced as
known forces and measuring the acceleration, velocity, and
displacement at several locations. The approach presented x(t) ) () (39)
herein embodies a fundamental advantage: perfect ,measure-
ments. lead, to within truncation errors and arithmetic errors, %here i(t) is the normal or modal coordinates of the 'steml.
to the true system parameters. Introducing Fq. (39) into the equations of tmotion, E-q. (133).

Berman's Method: A Summary
In the absence of damping Eq. (1) reduces to M/Ilf(t) 4 KE'i(t) - 0 (40)

Mx + Kx 0 (33) Multiplying Iq. (40) by F1, %c get

The orthgonality conditions of the system described by tq, L t81:! (t) E q'K.:q(t) 0 01)
(33) are

L Ml: (34a) Due to the orthogonaliy properties of the cigcnsectots,. q
(41) represents a set of "n" uncoupled second-order equa

E'Ah - diag(,' . W 2) .Il (.14h) tion,,. It the eigenvectors are normalized iith respect to the
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mass matrix as per Eqs. (34). Eq. (41) becomes Thus, the parameter matrices can be estimated uniquely. We
need to estimate only "n" parameters, viz., the diagonal

4(t) + ,( "III(t) =0. [,2] =diag(,.. ) (42) elements of M,. The elements of K,, can be derived from
those of M., through Eq. (44). Also, the amount of forced-

When the eigenvectors are not normalized, Eq. (41) can be response data required to estimate the modal matrices is not
written as large. We need only -2n" measurements ("n" accelerations

and "n" displacements), in addition to the measurement of
M,,,i(t) + K,,7(t) = 0 (43) forces.

M,, and K, are diagonal matrices; the generalized "modal Identification of Damped Systems
mass" and generalized "modal stiffness matrix," respectively. We now turn our attention to the necessary modifications of
Also, Km is related to M,, by the following relationship: the preceding approach for including viscous (or equivalent

viscous) damping. The equations of motion for a damped
Sw2 IK,,, (44) system are given by Eq. (I).

The eigenvalues and eigenvectors of a damped system are
The solution of Eq. (42) can be wAritten as complex quantities. In order to apply classical modal analysis

techniques, it is a usual practice to assume that the damping is
Y1,(t) = c,cosw,,t +s,sin,.,t i = 1.2,..., n (45) either small or of a proportional type. Since the measured

modes are complex, methods have been proposed to extract
c, and s, are constants depending upon n,(O) and i,(O), the normal modes from the complex modes. However, it is
Substituting Eq. (45) into the transformation Eq. (39). we possible to rigorously apply a generalized modal analysis
obtain technique by transforming Eq. (I) from configuration to state

space and estimate the system matrices, analogous to the
previous section.

Introducing the state vector
x():E(A,cosw:,t +B, sin,,t (46)

X()1 g() = [xI (t)x(i) 1 7

where it is evident Equation (1) can be written as

.A,=c,e, and 8,=s,e, M'g(t)+K'g(0):/*(t (51)
5k

where

Identifying either A, or B, is equivalent to identifying a scaled I
sersion of the ith normalized eigenvector. A Gauss-Newton A -K 0 (52)
least-squares differential correction method or a direct 0 (2
method based on the Fourier transform 2' of x() can be used 0 A

to obtain the modal parameters (w,.A,,B,).
We now turn attention to estimating the properly scaled [0 K

mass and stiffness matrices. Equation (43), in the presence of K"= I (52b)
forces, becomes K C

nM,i(t) + K,,,(t) = Erf(t) (47) r 0

where the (n x I) force vector f(t) may contain zero entries, P 1  (52c)

i.e., all of the degrees of freedom need not be forced. M,,, and f
K,, are easily determined from the scalar components of Eq.
(47), using the fact that M,, (i,i0 = wK, (ii). It should be The eigenvalues and eigenvectors of a system described by Eq.
noted that, henceforth, the notation E will be used to repre- (51) occur in complex conjugate pairs, i.e., if X, is an eigen-
sent the measured cigenvectors, normalized %sith respect to the value, h, is also an eigenvalue. Similarl. e, and e, are the
a priori mass matrix. Since E is measured, transformation eigenvectors of the system. The orthogonality relations are
equation (39) can be used to transform measurements in
physical space to modal space, i.e.. EtM*E I (53a)

(t) =E 'i(t) (48a) EK*E -A (53b)

L() IX(f) (48b) where A is a diagonal matrix of the eigensalue,,. Note that the
modal matrix is of order (2n x 2n). Also, the eigenvectors are

Introducing Eqs. (48) into Eq. (47), for a known force vector, normalized with respect to M' to satisf.
it is obviously possible to determine the diagonal elements of
the modal stiffness matrix K,, and, using Eq. (44). Ml,,. can bc e M'e, - I i = 1.2.2n (54)
computed. The properly scaled, configuration space-mas,,
matrix then can be obtained from When the eigenvectors are not normalized, of course, Eqs.

(53) become
f M E ' Al ,,," (49)

Similarly the stiffness matrix is gisen as E/'/'* = AM,, (55a)

KE 'KF (S0) 'K': - k,, (55b)

For high-dimensioned systems, of course, the inverses shosn where M,, and K,, are diagonal but complex matrices. The
are replaced by appropriate matrix reduction algorithms, same notations as in the pres ions scction are used. The
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eigenvectors have the form Although Berman's corrections to the diagonal elements are in
the right direction, the off-diagonal elements' corrections are

a, " of comparable size and are no longer zero. A significantly dIl-
e, (56) ferent final mass matrix estimate would have been obtained.L\,a, of course, if A 4 were chosen differently. The estimated stiff-

The free response of the system can be written as ness matrix for Berman's approach is found to be

x(r) = ae' + a,e / )()68.36 -- 32.52

/ -32.52 71.68
where X,( = -o,+jw,) and the ith eigenvalue, and a, is the It can be notedthat the diagonal terms are corrected lairl %%ell
damping factor and w, the damped fre 4uency of oscillation. sshile the corrections to off-diagonal terms are relatisely small
Equation (57) also can be written as in this case.

Using the method developed above (with the eigemalues
x(.)=2 e-"(Ccoswj-Ssinwt) (58) and eigenvectors calculated uing a finite Fourier transform).

the mass matrix is determined froii Eq. (49) to be

C, andS, are the real and imaginary components of a, respec- 100.00 -0.841SF-0-4
tisely. A Gauss-Newton least-squares differential correction A1=
method ' can be used to identify C,. S, a,, and w, - 0.8415E-04 200.0
(i= 1.2_.n). Fast Fourier transform of x( f) is quite useful in
this case. The frequencies can be estimated from the power and the estimated stiffness matrix, from Eq. (51), is calculated
spectral density (psd) plot and used as a priori values in the as
Gauss-Ne%ton algorithm. In this way, the convergence do- - 71.995 -35.997
main of the algorithm can be enhanced considerably. Using K 1
the orthogonality relations [Eqs. (56)] and the trans- -35.997 71.9996 j
formation

The small residual errors ar the consequence of truncation of
gt) [e,77,(1) + e,f(t) = !L(t) (59) the Fourier transform of x(t) to obtain eigensalues or

.I eigenvectors. If the Gauss-Newton iteration is used instead,
the M and K matrix are recovered exactly (to eight digits). It k

Eq. (52) reduces to exident from this simple example that the proposed scheme
correctly identifies the system matrices to %ithin truncation er-

M,,i(t) = K,*,i(t) + Ef " () (60) rors in the finite Fourier transform. In essence, the scaling in-
plicit within Berman's correction norm minimization is re-

where placed by the requirement that the estimated Af and K be con-
sistent with a measured forced response.

17 M) = [77 t M (1t)... 7,ti,(t)] (61)

is a complex modal coordinate ,ector. Equation (60) can be Example 2
A two mass-spring damper system is considered. The

used to identify the M,,, and K,',, matrices from forced ato masring dte
response, analogous to the preious section. After determin-
ing the modal matrices, M and K" can be obtained from Eqs.
(56). The method is similar to the one for the undamped 1 0 1 1 5- 41 0.4- 0.2
system, except that the quantities insoled are complex. M A . K : I C_

0 I , - 4 4 i 0.2 0.2
* Numerical Examples Using Free The eigensalues are

and Forced Response
Example I XX, -0.222593 ±j2.578255

Consider a two mass-spring system. The mass and stiffness
are gi.en as X. - 0.027406 ±j0.545796

.IX) 0 ' 72 -36 Using the Gauss-Nesston method, the cigensalues and
A, . I A' cigensectors are estimated front free response. The free-

0 200 - 36 72 I. response data are properl scaled b, applying an impulsisc
-,, force on the second mass. The sstem matrices are obtained

using the excitationf, - 0. 1 sign (sin 0.21). The mas, stiff ine,,
Choosingr the a priori mas matrix M. and stiffness matrix A and damping matrices are identified exactly (eight digits).
f Thus, the present method generalizes fullk to include arbitrar\, . " ,iCOUs dam ping.•f90 0 65 -32 I

% 4  9 ConclusionsI 0 220 -32 79 [ Three no,.el schenes are proposed to identifs the

The true s steni eigens alhes and eiern\coirs are used as pararneters of %ibat ing ,trutures. Numerical result, on a
meastirements. Alter carrying out algebra of Bernian's ,atici of transparent esaiples support the salidit. of all
method, the estimated mass matrix is found to be three methods. 1he ph.sical properties of mass, stiffnes,, and

damping matrices are identified. All three proposed method,
F 96.67 6.67 1 are applicahle to damped structures. No assntinptions regal-

A= ding the nature of damping are made. other than it is of the
i 6.67 206.67 sis.ous type S stcms \Aith closely spaced Irequencies present
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* Eigenvalue Optimization Algorithms
b for Structure/Controller Design Iterations

D.S. Bodden*
Virginia PolYtechnic Institute and State University, Blacksburg, Virginia

and
J.L. Junkinst

Texas A&M Unit'ersitY, College Station, Texas

An eigenspace optimization approach is proposed and demonstrated for the design of feedback controllers for

the maneusers, vibration arrests of flex~ible structures. The algorithm developed is showsn to be equally useful in

sequential or simultaneous design iterations that modif) the structural parameters, sensor/actuator locations,

and control feedback gains. The approach is demonstrated using a differential equation model for the

"Draper RPL configuration." This model corresponds 1o the hardware used for exiperimental verification of

large flexible spacecraft maneuver controls. A number of sensor/actuator configurations are studied vis-a-vis

the degree of controllabilitv. Linear output feedback gaitns are determined using a novel optimization strategi.

The feasibilit% of the approach is established, but more research and numerical studies are required to extend
theser ideas to trul) high-dimensioned systems.

Parameterization of the Cont zolled System's For linear output feedback, we seek the constant gain mat rices

Eigenvalues and Eigenvectors G,, G,, and G., so that
CONSIDER a linear structure (modeled by a finite element u [l,+G t,

or similar discreti,.ation scheme) in wshich the configura- u Y.G,' +G 2 +Gy

tion %ector x is gos ernedl b the system of differential equations - -G,H,x -G_,H., - G,H.,x (3)

Wsx 4Cx , Kx =Bu(I
Substitution of Eq. (3) into Eq. (1) gives the closed-loop

s here system

M=n -n svmtnctric posit ie definite mass matrix M.i*+ x =Rx =O0 (4)
C=n xn s~mmetr positise semidefinite structural damp-

ing matrix where the closed-loop system's matrices are
K =n x t symmetric positi\ e semidefinite stiffness matrix
B= n x m control influence matrix MI= A4+ BG.,H,, e= C+ BGH 2. K + BG, H, (5)
x = n x I configUration %ector
u =rn control sector ( I =d/dt( I Introduce the notations

Considering! the case oif linear output feedback control, let the
loc-i position. s.elocit\. and acceleration measurements be M = M(a). C= C(a), KA= A:(a)
denoted b,.

B =B(c). H, =H, (b), G,=G, (g) (61

y, H~x. H.4,y, =H~i 2) here a ts a vector of the structural and geometric model
which represent the littear relationship of the locall) measured parameters (defining mass, stiffness, damping, configuration

Zposition t,- elo,t\i t':. and acceleration Y,, %%here lengths, cross- sectional areas, etc.). b a vector of the sensoT-
type and location parameters. c a vector of the actuator-type

In" .- ecor H, = m, Y n matri\ and location parameters, and g a vector of the control gains.
Defining the N'x I global structural and control parameter

" I: I sector H. = ni, x n matrix sector as

mI sector H., m, x n matrix PT  la~~~~ 7

it is apparent from Eqs. (5-7) that

Re~eised tDc t10, 19X4. re' iin receised Iar~h 1. 1985 ( opsrighi The details of the parameterizat ions of Eqs. (8) are dependent
1~98' Ii> .t I Junkiri. Published by> the American Institute of upon the particular modeling approach. Often, these are sini-

* Acronoulis arid Xsir,,riainis, In, , with permission peagbacepesos(h lmnsopapa xlctsi
- (.raduaie: Rcscaili v\~liant. Department of I riginecringr S,.ienc Pi alebai exrsin keeeet f perepit\i

and Me~hani, MCKI
tPriifess, Aeriispa,tc I nginvvi iug Department. Assouie I ello" Considering the first-order state-space differential eqUa-

AIAA tIon, w hich is the equjisalenit to the second-order closed-loop
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system of Eq. (4), dominate a measure of optimality or sensitivity. This allows
•( judicious and lower-dimensional suboptimizations to be madeAi =(9) and is a key to attacking truly high-order systems.

where These two qualitative ideas serve as the main moti.ation of
F M 010 M our approach. Of course, an initial design point (values for the

Z=t A B= I (10) elements of p) is requkred. Typically, the initial design point
' " J 0 [ -R _0 will be the output of some (arbitrary) structural design process

and, probably, a constant-gain optimal regulator design for
it is evident that the given structure. Thus, the present family of algorithms are

designed to begin with the typical output of a conventional .se-
A =A (p). B = B(p), (II) quential structure-controller design process. However. for

moderate-dimensional applications, we have been able to in-
The right and left eigenvalue problems [associated with the itiate control gain optimizations with a free-vibration (zero
z = oe?, solutions of Eq. (9)] are control gains) case and still achieve reliable cons.ergence.

Central to the application of the optimization algorithms
right: X,Ao, =Bo,, left: X,AT#, =Br4, developed below lies the necessity to compute efficiently the

partial derivatives of the generalized eigenalues and eigensec-
S= 1,2...2n (12) tors of Eqs. (12-14). Attractive algebraic equations have been

derived that explicitly determine these derivatives as "side
where the conventional normalizations for the eigenvectors calculations" at much less computational expense than the
are adopted as solution of the eigenvalue problem itself. The deselopment of

these equations is briefly summarized belo, for the first and
, TAO, =6,, T[BO, = 6,X, (13) second partial derivatives oi the eigenvalues.

SinceA =A (p) and B=B(p), it seems natural to consider the
eigenvalues IX- .... X2, I and eigenvectors -0, _ 2_ I Partial Derivatives of the Closed-Loop Eigenvalues
to be functions of the parameter vector p, viz., with Respect to Structural Model

and Control System Parameters
X,= X(p), 0,= (p), 4', W (14)

Differentiating Eqs. (12) with respect to a typical element p,
Except for occasional singular events (e.g., multiple eigen- of p, upon premultiplying the resulting two equations by 1

- values or near-multiple eigenvalues), the nonlinear functional and 01T and making use of Eqs. (13), gives
dependence of Eqs. (14) can be assumed to be continuous.

Qualitative Approach to Eigenspace Optimization + 6 X, _ + (, -X A--, = I-- - X,-- (15)

Most structural and control optimality criteria can be stated
explicitly in terms of X, and 0, or directly as functions of p. it
is obvious that an algorithm that can effectively optimize p ax , __ a4
(over some admissible set to minimize some optimality criteria 6 + X - )07"A -IXf (16)

*and satisfy the constraints stated as functions of p and X,) pro- ap,. Lp ap ap,
vides a direct method for controller/structure optimization
problems. Unfortunately, there are several formidable dif- Equations (15) and (16) hold for i= 1,2,..., 2n; j = 1,2,..., 2n;
ficulties, the two most prominent being: and f= 1,2,...,N. For i=j, both Eqs. (15) and (16) reduce to

I)The Nx I p vector is of high dimension, even for struc- the following well-known result' for the gradients of the 2n
tural and control system models of moderate complexity. The eigenvalues
dimension N of p can be several hundred.

. 2) The functional relationship implied by Eq. (14) is the ax, r aB _ ,.aA ] , (17)
solution fo the large eigenvalue problem of Eqs. (12) and (13). ap, a , ap,
It is typically a highly nonlinear function of p and is occa-
sionally characterized by singular local behavior (bifurcation Thus, having solved for eigenvalues and eigenvectors, a
points at repeated roots, for example). moderate side calculation produces the first-order eigen\alue

Practical optimization algorithms that can deal with these sensitivities. Differentiating Eq. (17), with respect to p., we
two sources of difficulty in a rigorous and globally convergent obtain the following equation for the second partial
way do not exist. However, we have developed a strategy for derivatives:
carrying out optimizations and suboptimizations, in spite of
these two sources of difficulty. There are two heuristic ideas
underlying our approach: ,, _, _ a X, 3A &A--

I) Regions of extremely high sensitivity (to the p vector) are aplap, L. ap,ap , ap, p,,
generally undesirable. Therefore, if the performance index or
constraints include a measure of eigenvalue solution sensitiv- a#,r [B A a-iB a.4 a ,,
ity, successful suboptimizations are obviously less likely to en- - A - +,

LK- counter the singular events. '  a p,, p , ap, ,,
2) Exact eigenvalue placement (or "pole placement"), for a

high-order system, is not a reasonable design approach. Since Eq. (18) involves ao,/ ap,, and a ,rp,,l . we must either
Rather than attempting to prescribe an exact point location evaluate or eliminate them. We choose the latter method.
for every eigenvalue, it is more reasonable (and leads to better Following Piaui.' we project a,, and a,,'ap, onto the
algorithms) to move all of the eigenvalues into an acceptable Fingt,' themselves aa
region of the complex plane. From the viewpoint of pole
placement, this allows attention to be locally concentrated a , "

upon just the "problem children" eigenvalues that are the far- at ! --, 171b0 (19)
thest outside the acceptable region or those that locally ap, k I al'. A -
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where a, and bA, are scalar constants. For ioj, substituting The initial conditions are mapped into modal space by
Eqs. (19) into Eqs. (15) and (16) yields premultiplying Eqs. (26) by [11 - = 't] 'A and utilizing Eq.

(13) to give

(X, - , X'- -pe T a - X-- -A ] 0' (20) (to) = [01 rdz (to) (29)

a B r  aA The system response in normal coordinates is then given by
(, -,)b,, = o f"g --_ - ,- , (21) Eqs. (28) and (29). However, the eigenvalues and eigenvectors

a.L8pe 8p J are in the general complex consisting of n eigenvalues and n

eigenvectors plus their associated n complex conjugates. We
For the case of distinct eigenvalues, Eqs. (20) and (21) provide seek a solution that will eliminate the complex conjugates and
the a, and bj, values, except for a,, and b,, (which remain thus allow us to truncate the number of modes used in the
undetermined). The normalization of Eq. (13), upon setting solution.
j=iand differentiating with respect top, and substituting Eq. The modal matrices are partitioned as follows:
(19), yields" ,+ ' +1 ol[ 0 0,1

a ,, b = - , --(2 2 ) (3 0 )

Substitution of Eq. (17) into Eq. (18) gives where St, 5 :., 01, and 02 are n x k matrices normalized by
Eqs. (13). It follows that €,, e,. 0,. and 02 are also n xk

, o il [ aB aA matrices and are thus the complex conjugates of €t. S2. me
8- X, 0 respectively. The vector of normal coordinates q can also be8pap, t ap,8 p,, _p,.Ip partitioned as

.,, + 8p G, , + , TG,, (23) = (31)

where r is a k x I vector. It can be shown that e is also k x I
- ith G, =- I8 p, -X, (8.4/o8p,). Substitution of Eqs. (19) and is the complex conjugate of r. Substituting Eqs. (30) and
into Eq. (23) gives (31) into Eq. (26), the response in configuration coordinates is

a.'X, = a~t :B a -eA a A

gp ap,,-- ap[' 
'  --- , X .0 r + 0, 9

+ (a,, + b,,),€[0G,,o, + (bk[G,,O, +a,.,0TG,,0,I
A . 1.(24) r L[Re0),1 Re~i- [Im,] l~m~l

(24) =2f (32)

Finally. eliminating a,, + b,, using Eq. (22) and a, and b, for
pe i using Eqs. (20) and (21) gives the final expressions for the From Eq. (32), it is evident that the complex conjugates of the
second partial derivatives, n eigenvalues and eigenvectors are not needed and that the k

8"\ 8aA modes can be used to determine the response. The measured
= r __ X, 8 , beam deflections and deflection rates follow from Eq. (2) and

8p,'ap, ,p,., , the controlled response from Eq. (3).

(r .4 T aA T
"p,,, = [ap, ap(5 A Model of Draper/RPL Configuration

Referring to Figs. I and 2. we consider the planar rota-

!Go,G,0, G,,Goional/vibrational dynamics of the demonstration experimen-
+ 1, [- X() tal model sponsored by the U.S. Air Force Rocket Propulsion

Laboratory for testing the control laws for maneuvering flexi-
which, of course, are singular for repeated eigenvalues. ble spacecraft; this experimental work is presently being con-

ducted at the C.S. Draper Laboratory.- The central hub is
%.. Closed-Loop Response supported by an air bearing table with four appendages can-

The response of the controlled configuation to initial distur- tilevered from the hub. Table I summarizes the Draper/RPL

bances is determined using a modal approach. The modal configuration parameters. Following Turner and Chun,- we

coordinates il are mapped into the state space by form a discretized model for the system by assuming that the
elastic deformations of each of the arms (relative to a body-

z =1, z = [O1t (26) fixed undeformed state) can be represented as linear combina-
tion of the comparison functions.

where (01 is the right modal matrix. Substituting Eqs. (26)
into Eq. (9), premultiplying by (StiT (the left modal matrix) O0(z) = I-cos(iklrzt - . t)
and utilizing Eqs. (13). the equations of motion are uncoupled2 L
and given by

,= ,, i =12..2n (27) so that the transverse body-fixed deformation of thejth arm is
modeled as

The solution to Eq. (27) is

y4(,Z)= (t q)0 (Z), j= 1,2.3.4. OZ- 1. (34)
S=e '=1,2,...2n (28) 1
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Radial elongation of the arms is neglected, as are out-of-plane tors, as expected, are not as accurately calculated.) Thus, we
deformations. For the numerical results presented below, we restrict our optimization discussions to the first nine modes.
took N,= 10. Using Eq. (34) to evaluate the potential and After the first (rigid-body) mode, the remaining modes occur
kinetic energy3 leads to equations of the form of Eq. (1), with in near pairs. The antisymmetic, "opposition" modes are sim-
the configuration vector pIe cantilever beam modes characterized by the adjacent

beams moving in opposition (the constraint torques between
x = [0 qIq2/'"'iq ,/::q,2q22 ""..q%2 :.."q4 q24 "....qq.] the hub and the beam clamp ci,cel in equal and opposite

pairs, resulting in a zero rotation of the hub). The antisym-
We restrict attention to the class of antisymmetric deforma- metric "unison" modes are perturbed cantilever modes (swith
tions whereby y,(t,z)wy(t,z) and y3(t,z)sy,(tz); thus, varied frequencies) characterized by all four beams moving in
q,,(t)mq, 2(I) and qO(t) q,4 (t). For this class of antisym- unison; the hub has nonzero rotation for these modes. As is
metric motions, the configuration vector can be collapsed to evident, the corresponding pair of unison and opposition fre-

quencies are closely spaced; this spacing decreases with in-
x= [0:q,,q2 ....q.,,q13q2 3 '"q,, I T (35) creasing mode number.

For N= 10, the order of the system of Eq. (1) is thus 21. The
explicit expressions for the elements of the M and K matrices Table I Draper/RPL configuration parameters
are developed in Ref. 3. We take Cas.K, where V is a con-
stant. For the numerical examples presented, p= I -E-5; the Hub radius lit
controlled response of the first seven modes is insensitive to an Rotary inertia of hub. r 8 slug-ft2

order of magnitude variation of i. In Fig. 3, we show the first Mass density of beams, p 5.22 slug f'
nine normal modes. Elastic modulus of the arms, E 1. x 10 lbin.2

The eigenvalues and eigenvectors for the first seven modes Arm thickness, th 0.125 in.

have converged in the numerical sense that increasing N does Arm height, h. 6 in.

not change the first four or five digits, whereas modes eight Arm length, Lslug
and nine have converged to about three digits. (However, the t ip mass 0.16 slug

4"., last ten higher-frequency computed eigenvalues and eigenvec-

rigid body
u3 u2 mod

' 0 HZ

opposition modes unison modes

1 33

.70 HZ 1.26 HZ

Fig. I The Draper/RPL configuration.
4 6----

8.19 Hi, 8.40 HZ

6 7

- 25.08 HZ 25.20 HZ
'.p +,.

'...P.'" Y2 " Y!J .:i

Fill. 2 Anil-symmetric deformation. Figl. 3 First nine normal modes.

,' ¢ .. .' .J_ '. ' ', .: W , ,' ' ': < ; - ' '. .' -. - ..' . . ' .' .' .' ':. ,.' ',' ', ..' ": . '. , .' ' ' .''10 9' " ' '

W'r,:,." ,r, . ", ' "- /.% , ,:',-%_ "-". " .- " , % ,"", .-.", "z", ", "-", " P3;"", ,', -A-""



NOV.-DEC. 1985 OPIIMIZATION ALGORITHMS FOR STRUCTURE/CONTROLLER DESIGN 701

Actuator/Sensor Configuration and No inequality constraints
We admit torque actuators on the central hub and at some 0 ,L _0:,[1I(P) ... X 2,(P), 01(P) .... 0.2 ,(P),P ISjt

station z on each appendage. We also admit rotational posi-
tion and velocity sensors on the hub and deflection and deflec- j = i,2,..., NJ (41)
tion rate sensors at some stations on each appendage. For the
case in which the actuators consist of a torque u, applied to
the hub, a torque u, applied at station z, on appendages I and Thus, the performance measure and constraints are defined in
2, and a torque u3 applied at station z: on appendages 3 and 4, terms of the eigensolution, but we also admit explicit
the right-hand side of Eq. (I) is dependence upon p to include, for example, structure and con-

trol system criteria. Equations (39-41) define a nonlinear pro-
l 2 2 1 u, gramming problem for which a number of algorithms have

I been developed and applied during the past two decades." 6

Bu = 0 2o'(:,) 0 / U, (36) One iteration stategy confines local attention to only the lo-
0" cally violated inequality constraints and all of the functions of

0 0 2' (z:) j~u Eqs. (39) and (40). Specifically, one can seek the smallest cor-
rection vector Ap that achieves specified increments of A J,

.where Au, and AO, for a subset of the functions of Eqs. (39-41).

d, Linearizing these equations about p, results in
o'(Z) =- [o(z) , (z)=lo,(z)... 1o(Z)r

07 (Z 1 0(Z d, = ---- _ I,~ (42)

and, if rotational position and velocity sensors are located on -A-' a

the hub, while colocated deflectional position and velocity
sensors are located at stations x .... x, on each appendage where 'y = [J,0,J3] 

. Since Eqs. (42) constitute, typically, a

then the sensor influence matrices H1, H., are both the same small number of equations in a large number of unknowns, we

S9x 21 matrix, expect an infinity of exact Ap solutions; some criterion must
be introduced to select a particular solution. Motivated by the

0I O Or 1 desire to satisfy, as nearly as possible, the implicit local linear-
ity assumption, we seek a "small Ap" solution. Minimizing

41 0 T. 0 T the correction norm rpT ,1p (for Wa suitable weight matrix)
e subject to Eq. (42) gives

H= .i=1,2 (37) [
0 *OTlx) O Wp=W Z IJY A (43a)

P_

-* 0 OT T(x)

0 Or ,T(x) 9

and 8
d

Sy [Oyl (1,X1)...y,(I,X )y (t,X , )...y? (t,X 8 )], d" )
d(38) 5 s

and the gains G, and G2 are both 3 x 9 matrcies. For the 4
numerical examples below, we initially set z,=z2=L/2,
x, =x3 =L/4,x 2 =x,=L/2, x-1 =x7=0.7L,x,=x =0.9L, and
selectively admit structural parameters, actuator locations, 3
and sensor locations along with the control gain vector in p.

10

Minimum Modification Strategy

for Structural/Controller Design Iterations

Consider a constrained optimization problem wherein we
seek the optimal value of the parameter vector p that ex-
tremizes some performance measure

J= J11\1(P) ...... \2,(P), 01/(p) ..... (P),P1 (39)

subject to the satisfaction of the N,, equality constraints _-.6 -. 4 -. 20

Cf (X I (P) .... *2p(P), ) .... 2(P),P = 0 Fig. 4 Eigenvalue placement locus of first nine modes: case I (con-
plnuatlon parameter a varys from zero to one In six Increments from

5% j = ,2..., N,, (40) right to left along each eigenvalue trajectory).

110
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where A is a Lagrange multiplier vector obtained by solving numerical example here, are prescribed as
__-_ [[ ]'

A=A1 (43b) obc = [3.0 0.03 0.03 0.03 0.01 0.01 0.002

0.0020.015 '.0015] (48)

Thus, the size of the linear system we must solve is equal to the

number of functions [from Eqs. (39-41)) that we seek to In order to enhance the convergence, a continuation pro-
change by the increment vector A, regardless of the number cedure is used: Eq. (44) is replaced by the one-parameter (a)
of elements in the 4p vector. The partial derivatives needed in family
Eq. (42) can be evaluated by the chain rule partial differentia-
tion of Eqs. (38-40), making use of the eigenvalue gradients of lobc, - "J [g(Q)] =0, 0 < 1a< (49)
Eq. (17). Of course, second-order optimization algorithms can
also be used,5 in which case one will need the second partial
derivatives of Eqs. (25). Obviously, a = 0 results in the tri% ial solution g(0)= 0 (cor-

" As a nonlinear programming strategy, we first seek a responding to free, uncontrolled vibration), whereas g(l) is the
nearest feasible p, which satisfies all of the constraints f Eqs. desired solution [since Eq. (49) becomes identical to Eq.
(40) and (41)] and then include J increments in A-y to seek a (44)]. Sweeping a from 0 to I allows us to define "stepping-
constrained optimal solution. This strategy can be formal- stone" problems that are arbitrarily near the converged
ized4 ; it is fully equivalent to the gradient projection con- neighboring solutions; thus, the generalized Newton
strained optimization algorithms, algorithms using Eq. (43), with 14'= 1 and p=-g, can be initi-

For example, we can apply the above developments to place ated with an arbitrarily close starting estimate and very nearly
the Draper/RPL system's closed-loop eigenvalues in a desired guarantee satisfaction of the implicit linearity assumption. For
region and, subject to this condition, minimize a robustness the particular calculations herein, we found rather large a in-
measure (e.g., the sensitivity of the eigenvalues with respect to crements of 1/6 led to reliable convergence. Thus, six in-
variation of uncertain system parameters). termediate a solutions were required to achieve final con-

vergence; for each a value, two or three iterations [Eq. (43)]
-. Numerical Examples: Eigenvalue Placement were required to find the g(a) satisfying Eq. (49).

for the Draper/RPL Configuration As a specific example, we used the initial g vector (displayed

Case I as the elements of G, and G..),

This first example is a modification of a result presented in F 0.001 0 0 0 0 0 0 0 0
Ref. 2. We consider the problem of finding a minimum norm
gain vector gmp (42 elements ofGandG.)thatresultsinthe G1=G2 0 0 0 0 0 0 0 0 0
eigenvalues of the closed-loop system [Eq. (9)] satisfying the
prescribed constraints of 0 0 0 0 0 0 0 0 0

*"b , - "Y (9) = 0 (44) The (1, 1) elements were set slightly nonzero, since exactly zero
whe, icauses the "rigid-body" eigenvalue to be zero with a resulting, where, in particular, we consider the constraint vector

-"' (g) = I[W I(g) / (g) 2 (g)... V(g)]I r  (45)

The damping factors ', (g) and damped frequencies w,(g) are F 1.2
related to the eigenvalues X, (g) as 7g

0,e... f'=-~Re JX, g) I/l[ I(ReX,"(g) 12 +[ImX'lg)ll 121lf, , .....

I- I = X, (9)1, ti=1,2 .... (46) l
t/L. 05

, Bea 1-
The eigenvalues are labeled according to the ordering t Beam 3

4 -1.2 .4
I ImX, (g)l 1<_ ImX2 (g) I!5_... S I ImX,(g)l1 (47) C

%":. I6 3 2
The objective values of the damping factors and the first tine (S)
natural frequency (the elements of o for the specific Fig. 6 Beam deflection response (midspan stalion'o: cae 1.

(deg)
4

.iI A
X!.1.00

Beam I -
.4 -1.21 Beam 3 ---

11 time (s)'5. ttm Is) 32 u - 16 ()

Fig. 5 Closed-loop response of 0(t): case I. Filt. 7 Beam deflection response (lip station-0: case 1.
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~12

S--12

0 16 time (s) 321 i (5 32Fig. 10 Control torque U3(0): casw I.

tine (s) 3

Fig. I Control torque UL(t): case 0.

12 
(aeg)

0V VVV V VVaV~VV

16 tim (s) 32 0 76 time (s) 32

Fig. 9 Control torque U2(r): case 1. Fig. 11 Closed-loop response of 0(t): case 2.

rank-deficient linear system (because the damping ratio sensitivity vanishes if X, -0).
The final converged gain matrices were found to be (only three digits are shown)

153 4.38 .0 21.5 .0 4.38 0.0 21.5 0.01
(50a)

= 0.0 2.66 7.89 13.9 22.5 2.65 7.89 13.9 22.5

0.0 2.66 7.89 13.9 22.5 2.65 7.89 13.9 22.51

,-4.06 -0.389 0.0 - 1.73 0.0 -0.389 0.0 - 1.73 0.0

G2= 0.0 0.094 -0.036 0.188 -0.100 0.061 -0.170 0.135 -0.211(I I (50b)

0.0 0.061 0.170 0.135 -0.211 0.094 -0.036 0.188 -0.100

where the 12 zeros indicate elements of G, and G2 not used in result, even though we have not forced this condition by
p. The Iocii of the first nine closed-loop eigenvalues are plot- weighting.
ted in Fig. 4 for 0 :<as I, with cr=0 the point nearest the
imaginary axis in all cases. Note that, for eigenvalues 8 and 9, Case 2
the structural damping produced damping factors exceeding This case is the same as case I except that we modified the
the objective damping factors and thus these eigenvalues ex- parameter vector to include the sensor and actuator locations,
perienced little movement. All other higher calculated eigen- in addition to the 42 control gains of case 1, as
values IEqs. (10-12)] remained in the left half-plane, although
this does not occur if the structural damping is assumed p =actuator location vector c
negligible. = sensor location vector b

The closed-loop response for the controlled configuration
was calculated for initial disturbances of (tto) = 5 deg rigid- =gain vector, (SI)
body rotation and q1, (to) = 0.02, which corresponds to a tip
deflection of 1.66 in. for arms I and 2. The hub angle time Thus, the two appendage actuator stations (z,,z 2) plus the
history and beam deflection time histories for z/L = 1/ and I eight actuator sensor (x1,...,x8) stations brings the total
are illustrated in Figs. 5-7, respectively. The torque actuator dimension of p to 52. Upon applying the minimum norm cor-
responses are shown in Figs. 8-10 for actuators u ', u2, and u., rection of Eq. (43) to satisfy the constraint of Eq. (44), with
respectively. In Fig. 8, it can be seen that there are high- W= 1, we found the sensor and actuator stations were moving

:. frequency oscillations superimposed on the first few cycles of undesirably large amounts, so we introduced weights of 10 on
the low-frequency response. This is due to the high-frequency the actuator positions and the two inboard sensor stations,
vibration of modes 8 and 9, but these are quickly damped out while a weight of 103 was applied to the two outboard sensors.
due to the structural and controller damping. Also, note that With this modest artwork on the weight selection, the
ul is doing most of the work compared to u, and u,, a desired minimum norm algorithm was applied (with six continuation
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steps as in case I) and reliable covergence ensued to place the eigenalues to satisfy Eqs. (44) and (48).
The resulting converged gain matrices ssere found to be

92.1 1.71 0.0 10.5 0.0 1.75 0.0 10.7 0.0 1
G= 0.0 1.55 4.93 9.36 15.2 1.57 5.06 9.56 15.5

0.0 1.57 4.85 9.15 14.9 1.59 4.98 9.38 15.2 (52a)

[ -4.14 -0.165 0.0 -2.43 0.0 -0.305 0.0 -2.80 0.01

G,= I 0.0 -1.09 2.07 -2.80 4.54 -1.13 1.43 -2.76 3.87

0.0 -1.10 1.85 -2.60 4.28 - 1.21 1.72 - 3.04 4.46 (52b)

and the converged (initial values in parenthesis) appendage ac- The continuation/root locus of the eigensalue, is essentially
tuator stations were identical to Fig. 4. However, the freedom to move the sensor

and actuator locations has proved constructive; by com-
z, = 0. 1959 L (0.5 L), on appendages I and 2 parison of Eqs. (50) and (52). it is obvious that the gains have

been substantially reduced. Note in Eq. (53) that the appen-
z 2 =0.1841 L (0.SL), on appendages3and4 (53) dage torquers hae been moved much closer to the hub,

whereas the sensors have been moded significantly avay from
whereas the converged (initial) sensor stations were, on appen- the hub. The net effect is that, even though the closed-loop
dages I and 2, eigenvalues have the same position, smaller control torques

are required. This is evident in comparing the controlled
x, = 0.2546 (0.25 L) xj = 0. 7155 (0. 7 L) response of case 2 to the same initial conditions as case I (Figs.

11-16), with the corresponding figures of case I (Figs. 5-10).
x, =05414 (0.5 L) x = 0.9317 (0.9L) (54a) Note that the peak torque is 17 ft-lb for case I, %hereas it is

only 13 ft-lb for case 2. The controlled response is virtuall% un-
Sa o p a 3changed (as might be expected, since the two sets of eigen--and on appendages 3 and 4,va u s ret e am )' ,, values are the same).

x, =0.2564 (025 L) Case3

x6 =0.3443 (0.3 L) This case is the same as case 2 with to ness ingredients:
I) two structural parameters the appendage length L and the

x 7 = 0. 
7167 (0. 7 L) tip mass m,, are varied to pro% ide some structural design con-

trol over the free-vibration frequency spectrum of the struc-
x, =0.9321 (0. 9L) (54b) ture; and 2) in comparison to case 2, the case 3 controlled

"rigid-body mode" eigenvalue is constrained to be the lower

1 .2-

2 12

XA v

X/L. 0.50 0
Be1-

.12

-'1.1 Bem3 3?

0 16 time (s) 32

Fig. 12 Beam deflection response (midspan .lalions): case 2. 16 time (S) 32

Fig. 14 Control torque IM(t): case 2.

CC

Beam 3--

0 -16 time (S) 32 0 it time 5) 32

Fit. 13 fleam deflection response (tip slallions): case 2. FIg. 15 ('ontrol torque V M): caa 2.
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1?

- X/L. 0. 50

-12 Beam 3---

0 16 time (s) 32 0 16 time (s) 32

Fig. 16 Control torque U30: case Fig. I Beam deflection response (midspan'stations): case 3.

,it,,

d, 4 (deg~ 1.2

0 0\
9C

.. 5(I -

XlL. 1.00
Beam 1

- -1.2 Beam 3 ---

0 16 time (s) 32 0 16 time (s) 32

Fig. 17 Closed-loop response of 0(t): case 3. Fig. 19 Beam deflection response (tip stations): case 3.

frequency and is much more heavily damped, to be consistent
with a "slewing" attitude maneuver/vibration arrest control The converged (initial) appendage actuator positions were
law.

Thus, we adopt the following 12 objective constraints for z,= 0.4102 L (0.5 L), on appendages I and 2
the closed-loop eigenvalues (where the nonzero numbers in
parentheses indicate initial natural frequencies of original un- Z2 = 0.4102 L (0.5 L), on appendages 3 and 4 (57)
controlled configuration):

-=whereas the converged (initial) appendage sensor positions
- .were, on appendages I and 2,

w, = 0.3 rls (0) rigid body mode frequency

,= 4.5 r/s (4.37) first flexural mode frequency x, =0.2539L (0.25L)
w3 = 8.3 r/s (7.91) second flexural mode frequency

, =0.7 (0) rigid body mode damping factorI2 =0.03 (0) first flexible mode damping factor
= 0.03 (0) second flexible mode damping factor X3 =0.7608L (0.7L)
~=0.x01 (0) third flexible mode damping factor
= 0.01 (0) fourth flexible mode damping factor" =0.00 (0) fifth flexible mode dampng factor x, =0.9653 L (0.9 L) (58a)" ' = 0. 002 (0) fifth flexible mode damping factor

= 0.002 (0) sixth flexible mode damping factor and on appendages 3 and 4,
= 0.0015 (0) seventh flexible mode damping factor

S=0.0015 (0) eighth flexible mode damping factor j x, =0.2539 L(0.25 L)

(55) x, =O.5010 L (0.5 L)
These constraints were imposed in two stages. First, the struc-

,P tural parameters (L,M,,) were adjusted to drive W2 and wJ1 to x,=0.7608L (0.7L)
their objective values. In the second stage, the 52 control gains
and sensor/actuator stations are modified (in 6 continuation
steps as in case 2) to drive -, to the above objective values.
Convergence was reliably obtained and the resulting control
were found to be

[ 4.84 0.148 0.0 1.01 0.0 0.148 0.0 0.101 0.0 (56a)

G, = 0.0 0.034 0.116 0.214 0.315 0.037 0.125 0.231 0.341

0.0 0.036 0.125 0.231 0.341 0.034 0.116 0.214 0.315

16.3 -0.026 0.0 -0.148 0.0 -0.026 0.0 -0.148 0.0

G, = 0.0 0.065 0.011 0.138 -0.256 -0.066 -0.068 0.111 -0.068 (56b)

0.0 0.066 -0.448 -0.111 -0.448 0.065 0.011 0.137 -0.256
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tions are different (closer to midspan). It is also evident that: 1.?, the present maneuver controls are much more attractive than
cases I and 2. We have done a variety of parameter variations

-further establishing that the rigid-body eigenvalue placement
is the most important feature of case 3. For any reasonable

o .variation of the sensor/actuator stations and/or structural
parameters, we can optimize the control gains to place the

.eigenvalues in the same position and achieve analogous
", ' results.

,, 1.2

Conclusions
0 16 tim (s) 32 We have developed and demonstated a minimum modifica-

tion strategy for structural and control parameter optimiza-
Fig. 20 Control torque U,(t): ease 3. tion. Numerical experience indicates occasional difficulties

with the uncontrolled modes being destabilized, but since all
of the eigenvalues (up through a conservative number) are
calculated on each iteration, these problems can be cir-

1.2 cumvented by introducing appropriate constraints to stabilize
these modes. The method has worked well on the problems
studied to date and appears to be an attractive approach to

* follow in the development of an interactive software system0 v for structure/controller design iterations. Extension of the
ideas of this paper to determine the weight matrices for impos-
ing eigenvalue placement upon optimal quadratic regulators is

-1.2 presented in Ref. 8. The algorithms presented herein have
been found relatively immune to the high dimensionality and
nonlinearity of the eigenvalue placement problem.

0 16 tim (s) 32

[ *%P., Fig. 21 Control torque U2(t): case 3., Acknowledgment
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ABSTRACT INTRODUCTION

A sequential linear programming approach for The practical need for optimal redesign of

optimal placement/constrained optimization of existing dynamic structures is clearly evident. A
etgenvalues and eigenvectors of linear dynamical good example is aeroelastic tailoring where
systems is presented. As an example, the total mass stiffness, mass and geometrical characteristics of
of a structure is minimized while the natural an aircraft structure are optimally distributed
frequencies for selected modes are gradually driven using composite materials, for the improvement of

to desired values. This highly nonlinear aeroelastle properties. For dynamic structures in
constrained optimization problem is locally general, modifications are usually focused on modal

linearized and linear assumptions enforced by characteristics. However, since modal
specifying maximum allowable local parameter characteristics and design vectors are related by

changes. However, the above constraints on the elgenvalue problems, the relationship is naturally
- magnitude of local parameter change restricts the complex in addition to being numerically formidable

magnitude of changes in the system characteristics, for high dimensioned systems. The optimization
and in particular, eigenvalue constraint objectives problem is further complicated if the designer
which may differ significantly from nominal starting wishes to consider a large number of constraints,
values. The above difficulty is overcome by a well mostly inequalities, on the minimum and/or maximum
tested continuation technique which replaces the allowable design vector.
original, possibly rigid, constraints by an In this paper, the optimal redesign problem is
adjustable sequence of neighboring constraints. The treated as a general nonlinear programming problem.
above approach appears computationally suitable for The cost function and constraint equations are
redesign of hlgh-dimensloned, complex dynamical linearized about a nominal design to obtain a

systems. Numerical examples are included to sequential set of linear optimization problems. The
demonstrate the practical merit of this approach, above linearization assumes a good initial guess of

the design vector. Unfortunately, for problems
which includes eigenvalue constraints and are

NOMENCLATURE structurally complex, good initial guess of the

design vector may be impossible to obtain, or at
J cost function best depends heavily on the designer's experience
p design vector and the type and amount of redesign desired. The

p starting design vector above need for good initial guess can be overcome;

Ap design vector change at least to a very significant degree, by
f constraint vector introducing the continuation method of handling
t constraint objective vector constraint equations. This amounts to replacing the
F current constraint objective vector original constraint equations by a sequential
-I continuation parameter neighboring set of constraint equations. Earlier
. maximum allowable local parameter applications of continuation techniques are given in

change vector [1 ,2] where closed-loop elgenvalue constraints are

y transformed design vector change considered in the context of control system design.
x generalized displacement vector The present work was motivated by the introduction
H global mass matrix In [3] of sequential linear programming algorithm to
K global stiffness matrix optimize damper locations for vibration suppression.

M mass matrix for j-th element In [3,4], the sequential linear programming approach
Ki stiffness matrix for j-th element combined with the continuation method is used for
hi beam element length the design of control systems. The development in

" mass/length distribution this paper closely parallels the work in [4] and
n - bending stiffness distribution differs primarily in the optimization/design

E Young's modulus objectives, i.e., structural redesign instead of
-. p Mass density controls design.

-- element shape function To demonstrate the proposed approach of optimal

r.., nondimensionalized element coordinates structural redesign, a Finite Element (FE) model of

Pu lower bound vector on nodal thickness a cantilever beam is considered. The thickness at
p upper bound vector on nodal thickness the nodes are chosen as design parameters for a
A0 eigenvalue vector constant width, rectangular cross section beam. The
A objective eigenvalue vector cost function to be minimized is chosen as the total

. ndtural frequency mass of the beam while selected natural frequencies

v eigenvector are gradually driven to desired values subjected to

• .'. ,"
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geonetrical inequality constraints on the maximum Applying the continuation technique of Eq. (3)
and minimum thickness along the beam. to the right hand side of Eq. (2). we obtain

o 3J

TRANSFORMATION OF A GENERAL NONLINEAR maximize J(p-) * p * ... (4)
PROGRAMMING PROBLEM TO A SEQUENTIAL LIN- &p Zp Pi-1

EAR PROGRAM

subject to
Let us consider the general nonlinear af a

. programming problem. f(pf -) A4 6...{(<,,)J) (l 1YfIMp ).f fo
-p i-I I

maximize J(p) where
P 0l p -PI-1 * Ap

subject to f(p) 1(, -, >1 fo (1)

where p Is the design vector and fo is the The optimization problem of Eq. (4) must be
constraint objective. By linearizing Eq. (1) about transformed to a non-negative variable so that the
a nominal design. I.e. at i-th step, we get. Simplex algorithm [5) may be used directly. In

addition, the Output of a Simplex algorithm may
Atill predict large corrections for some elements of

. aJ Ap. For the above reasons, we Introduce bounds on
maximize J(p 1 

)
+ -1 P .-I .. the maximum allowable local parameter change,

Ap ap r-
-c<Ap c (5)

subject to
"f which enhances local linearizations. The

f(p-) - p Ap 1 .. {(,-,)} to (2) transformation to non-negative variables and the

a I- bounding of local change can be easily done by
where introducing a linear transformation.

"JPi PI-1 + A p

y - AP + £ (6)
The formulation in Eq. (2) suffers two major
problems; a feasible solution to the original Using Eq. (5) and (6) in (4), we obtain the standard
problem may not exist, and a sufficiently good linear program at step "I",
initial guess to validate linear expansion maybe
impossible to obtain. The continuation method aJ
resolves the above problems by (1) seeking at least maximize -I y * ... (7)
a feasible solution to a neighbor of the original y ap Pi-1

i problem if Indeed a feasible solution to the
original problem does not exist and, (ii) subject to
eliminating the need for a good initial guess by
starting the iteration with a neighboring converged f [+

,*-" solution. The continuation method does the above by -1 y<,-,>}(1-Yl)f(p
5
).YIf°-f(P 1 )*--

replacing the original constraint objectives, fo, by ap iap
a sequential neighboring set of constraint
objectives, F(l), where y ( 2c

y>O
F(Yi) - (1 - Yi

) 
f(pS) * fr (3)

where

where p3 is an arbitrarily chosen starting design Ap - y - £

vector (more appropriately, p is associated with P1  -
the unmodified existing structure) and Y i is a
scaldr parameter satisfying

0 (0 <Y 2 "' N"1 MINIMUM WEIGHT DESIGN OF A BEAM FINITE
"-- -ELEMENT MODEL

The convex combination of starting constraint and
final constraint shown in Eq. (3) reveals the
following facts: To demonstrate the approach outlined earlier, we

consider here the problem of minimum weight design

at Y - 0 , F(O) . f(ps) of a cantilever beam structure modeled by finite
elements. A nominal uniform beam Is assumed given

at Y = YN 1. F(M) - f(pO) and Its corresponding natural frequencies known.
The problem is to find the minimum weight

I.e. if convergence is achieved at 1 - 1, we recover configuration among all those which satisfies
the original objective constraint condition. It Is desired natural frequency equality constraints and
also obvious but nevertheless important to note that thickness inequality constraints. We note here that
if the problem has a feasible solution at Y 1 1, the the above constraints may arise form physical
problem will be solved In N steps. factors such as material property limitations,

Al m desired natural frequency locations or static
buckling design limitations.
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Consider the linear free vibration equations subject to
Ey ( g - Ec (1lb)

M x (t) * K x (t) - 0 (8) yT 2c (1c)

where

ne ne -I y (1-7 )A(p
5
)* A -(p (l1d)

M - E M K - E K (98) ap p  
- 1 Ip-J.1 i J-1 J

y a 0 (Ile)

represents the global mass and stiffness matrices, where
For thin bean In transverse vibration, the j-th Ap - y -
element mass and stiffness Matrices takes the form, PL - PI-1 Ap

h I and
mN - (.)E,)[,)Td (9b)j 2 - 1 E"

The major computational effort required in the

where # is the element shape function, 0 and q are problem as posed In Eq. (11) involves solving the

the ass and stiffness distributions" over ij-th generalized symmetric eigenvalue problem
element and h represents the element length.

To form the design vector, we let the thickness AMv - Kv

values at some judicious choice of FE nodes be the
unknowns and linearly interpolate the nodal values for the selected NH modes and the solution of the
whenever we need internal values. The design vector linear program itself using the Simplex Method. The

can then be written as eigenvalue sensitivities required in Eq. (lid) is
derived in [6) and given as,

Wi ~ ~~ P (Pl' ..... P P)'K

pN--P " T -" - vi (12)

where P represents the beam thickness at i-th node ap ap ap

and NP is the total number of design parameters.
We now formulate the minimum weight elgenvalue

placement problem as,
The stiffness and mass sensitivity matrices required

minimize J(p) above can be computed and assembled in same fashion

p as stiffness and mass matrices themselves in Eq.
(9), and is given by,

where
aM ne BMr aK ne aK

J(p) - pah[l/2,1,1,....1,1,1/23p (10a) Z - r E -Z r (13a)
,R P r-1 ap J ap r-1 p

subject to j r r-1

0
A -A j 1. N (10b)

a where

< i j - 1 , ... , N P (ab ) w1er e!J - - M1 h 1 3ej

-- . - I - (0C)L4j[*Td- (3b)
wbere u

° 
is the objective (desired) eigenvalue and ap 2 -1 ap

p , p are the lower and upper bounds on nodal k k
thicknesses.

Following earlier derivations, the problem posed 2 2 T

in Eq. (10) can be transformed to the form of Eq. aK j 8 1 an, dj rd2 (1c
(7) to obtain the linear program at step 1, - I p (C) - - c

ap h -1 ap & d

maximize -hcTy (1a)

y
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W- emphasize here that In the above problem, the A major advantage of the linear optimization

continuation family of constraint objectives, as approach presented here Is that at each continuation

given by Eq. (3), was applied only to the elgenvalue step, an optimal solution, if it exists, can be

constraints of Eq. (lOb) since it was deemed the found very efficiently using the well founded

only compromisable and nontrivial constraint. Simplex method. The reason is that only a finite
number of feasible possibilities exists and the he
Simplex algorithm efficiently computes the optimal

solution. A second major advantage is the
NUMERICAL EXAMPLE flexibility to handle equality and inequality

constraints on both the design variables and
functions thereof.

Table I gives the data for the particular Finally, and perhaps most importantly, failures
cantilever beam FE model considered. Two cases were to reach the final (Y - I) solution Is usually
computed to illustrate the main features of the softened by convergence to an intermediate (0
design approach, specifically, the effect of 1) neighbor. The active constraint set and gradient
relaxing constraints and the effect of different Information of the final convergence provides a
starting beam configuration on the final converged basis for Intelligent revisions of the problem
configurations, statement.

The effects of relaxing stiffness constraints
are given In Table 2. The starting frequencies and
objective natural frequencies are given in Table 2a. REFERENCES
The total mass design history is given In Table 2b.
It is noted that all three cases reached the final
objectives. In addition, the total mass decreases I. Bodden, D.S. and Junkins, J.L., "Elgenvalue

" as the lower bounds on thickness decreases, thus Optimization Algorithms for Structural/Control

verifying the fact that more design flexibility Design Iterations," ACC, San Diego, CA, June
leads to better performance. Table 2c shows the 6-8, 1984
uniform initial design vector, the imposed lower and
upper bounds and the final design configurations. 2. Junklns, J.L.. Bodden, D.S. and Turner, J.D.,
which is highly non-uniform. Incidentally, several "A Unified Approach to Structure and control
elements of the design vector have reached their System Design Iterations," Fourth
lower and upper limits and clearly this is useful International Conference on Applied
information to the designer. Numerical Modelling, Tainan. Taiwan, Dec. 27-

The effects of different starting beam 29, 1984
configurations are give in Table 3. Obviously,
different nominal beams corresponds to different 3. Horta, L.G.. Juang, J-N, and Junkins, J.L., "A
initial natural frequencies. However, all three Sequential Linear Optimizatio. Approach for
completely different starting beams converged to Controller Design," AIAA Paper 85-1971-CP, AIAA
essentially the same total weight and similar Guidance, Navigation & Control Conference,
configuration beam as seen in Tables 3b and 3c. The Snowmass, CO, Aug. 19-21, 1985
results above are consistent with a conclusion

. reached in [3) that the continuation procedure with 4. Lim, K.B. and Junkins, J.L. "Minimum
• sequential linear optimization more often converges Sensitivity Elgenvalue Placement via

and yields the same solutions for different Initial Sequential Linear Programming,"
conditions than does conventional nonlinear Proceedings or the Mountain Lake Dynamics and
optimization routines. Control Institute, Mountain Lake, VA, June 9-

In the previous examples, the thickness 11, 1985, pp. 122-1I4
constraints and the objective frequencies were not
too demanding. The above relaxed circumstance were 5. Hadley, G., Linear Programming. Addison-Wesley
the main reasons for the success of all previous Publishing Co., Inc., Reading, MA, 1962
runs. Additional results, not shown here, indicates
th3t Imposing more restrictive bounds on the 6. Fox, R.L. and Kapoor, M.P., "Rates of Change of
thickness made the realization of frequency Elgenvalues and Eigenvectors," AIAA Journal,
objectives more difficult and in some cases its Vol. 6, No. 12, Dec. 1968, pp. 2426-29
convergence to desired conditions impossible.

CONCLUSIONS

A sequential linear programming approach
'- combined with a continuation method of handling

constraints has been derived for attacking a class
of nonlinear programming problems and In particular,
optimal structural redesign problems. The numerical

robustness of the proposed algorithm has been
demonstrated by a minimum weight redesign problem
with elgenvalue constraints consisting of 20 degrees
of freedom and 38 constraints with 11 design
parameter.
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Young's Modulus 21.5 X 106 psi

mass density 
.065 lb/in

3

beam width I in

beam length 100 in

number of elements (uniform length) 10

number of degrees of freedom 20

dimension of design vector 11

number of equality constraints on frequencies 5

number of lover bound inequality constraints on thickness 11

number of upper bound inequality constraints on thickness 11

number of inequality constraints on maximum allowable local parameter change 11

Table 1. Data for graphite epoxy cantilever beam finite element model

%

W
s 

(rad/sec) W
° 

(rad/sec)

1.64 2.82

11.5 10.9

' -' . 32.3 30.8

63.5 67.0 y p - .5 p - .3 p - .i

105.1 104.8
0 6.5 6.5 6.5

. 6.1 6.1 6.1
Table 2a. Effect of relaxing

constraints-starting .2 5.8 5.8 5.8
and objective frequencies. .3 5.7 5.6 5.6

PS s T .4 5.5 5.2 5.1

-u . (2, . ,2)T .5 5.6 5.1 4.5

.6 5.7 5.1 4.3

.7 5.8 5.2 4.4

.8 5.9 5.3 4.5

.9 6.0 5.4 4.6

1.0 6.1 5.6 4.7

Table 2b. Effect of relaxing constraints-total
mass histories for different stiffness

constraints

121



Node No. Nodal Starting Thickness p - .5 p * .3 p * .1Coord. (in.) (in.) Final Thickness Final Thickness Final Thickness

(in.) (in.) (in.)

1 0 1.0 1.791 1.753 1.620

2 10 1.0 .531 .300 .100

3 20 1.0 1.811 2.000 1.916

4 30 1.0 1.407 .482 .100

5 40 1.0 .668 1.139 1.083

Ir 6 50 1.0 1.116 1.252 1.148

7 60 1.0 .589 .657 .666

8 70 1.0 .500 .300 .100

9 80 1.0 1.092 1.157 .990

10 90 1.0 .500 .434 .371

11 100 1.0 .500 .300 .100

Table 2c. Effort of relaxing Constraints - converged design vector (y - 1)pU

'.-p -

-7

Mode f

No. w (1) S (2) a (3) a (4) f

1 1.84 1.70 1.75 3.14 3.00

2 11.5 11.4 9.67 10.8 11.5

3 32.4 31.7 23.7 29.3 30.8

4 63.5 61.1 49.7 59.2 67.0

5 105.2 105.7 89.9 91.2 105.2

Table 3a. Effect on different starting beau configurations - starting and
final frequencies for four beams.

L - (.5 ...... 5)T

p - ( 2..... 2)
T

1 122
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Starting Starting Starting Starting
beam (1) beam (2) beam (3) boom (4)

0 6.5 6.4 5.7 6.5

.1 6.1 6.0 5.7 6.1

.2 5.9 5.7 5.6 6.1

.3 5.7 5.5 5.4 6.1

.4 5.6 5.5 5.3 6.1

.5 5.7 5.6 5.4 6.0

.6 5.8 5.7 5.5 6.0

.7 5.9 5.9 5.7 6.0

.8 6.0 6.0 5.8 6.1

.9 6.0 6.0 5.9 6.1

1.0 6.1 6.1 6.0 6.1

Table 3b. Effect of different starting beam configurations-total mass
histories

N ;ode No. s Beam (1) f Beam (2) f s Beam (3) f s Beam (4) f

. 1 1.00 1.91 .95 1.90 .80 2.00 1.50 2.00

2 1.00 .50 .85 .50 .90 .50 1.50 .50

* 3 1.00 1.77 1.00 1.79 1.30 1.62 1.50 1.67

4 1.00 1.71 .95 1.69 .70 .50 1.50 1.26

5 1.00 .59 1.10 .59 .90 1.71 1.50 1.32

6 1.00 1.04 .91 1.04 .90 .50 .60 .50

7 1.00 .71 1.20 .71 1.00 1.51 .60 1.06

8 1.00 .50 1.00 .50 1.00 .50 .60 .50

9 1.00 .96 .88 .97 .50 .50 .60 .69

10 1.00 .50 1.00 .50 .60 .70 .60 .72

I1 1.00 .50 .98 .50 1.40 .52 .60 .50

Table 3c. Effect of different starting beam configurations - starting and final thickness
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A SIMULTANEOUS STRUCTURE/CONTROLLER
DESIGN ITERATION NETHOD

John L. Junkins and Dong Won Rew
Department of Engineering Science and Mechanics

P Virginia Polytechnic Institute and State University
Blacksburg. VA 24061

.' Abstract

H is an r x n real matrix
Several methods are presented for place- G is an m x r real control gain matrix

ment/constrained optimization of the closed loop
elgenvalues and eigenvectors of linear dynamical and the closed loop system matrix is
systems. A Unified approach is taken to (t) X - A + BGH (5)
iterate the design parameters in the plant being
controlled, (ii),the location of sensor and actua- In the absence of disturbances (d = 0), the closed
tors, (iii) the elements of a direct output feed- loop performance can be obtained by assumingqan
back gain matrix, and (iv) the weight matrices In exponential solution of the form x • .exp );
a time-domain LQG performance index, or (v) a this leads to the generalized eigenvalue problems:
ccmbination of the foregoing, to accomplish a con- T -T
strained, simultaneous optimization of the sys- right: xiZai =WA ; left: x - (6)
tem's closed loop eigenvalues, eigenvectors, and
their sensitivities. A low dimensioned discrete where I a 1.2,...,n and a , S are the right and
s)stem and an order 42 model of a flexible left etgenvectors correspbndihg to the assumed
structure controlled via direct output feedback distinct elgenvalues (X , , x). The elgen-
are used to illustrate the approach. values and elgenvectors 1re gener'Ally complex. We

adopt the conventional normalizations:1. INTRODUCTION t]TZlO] = III . [o]TA1 a] - diagIl]J (7)

We show below that several different methods
to design high order linear feedback control laws where [a] - [a1...a0I and In1 (0 .s.. .snI are the
can be unified in the sense that a single approach right and left Imodl matrices.
can be taken to "optimally tune" these methods
vis-a-vis the placement and sensitivity of the Let us now address the situation in which
closed-loop eigenvalues and eigenvectors. In all, or at least, some of the matrices A, Z, B,
Sections 2 and 3, we formulate a generalized H, G, and therefore A a A + BGH, are functions of
closed loop elgenvalue sensitivity and constrained a q x 1 system design vector p. The elements p
optimization approach. In Sections 4, 5, 6, we of p can be, for example, (I) the control gainhs
show how three different approaches to design of (elements of G), (Ii) an indirect parameterization
linear feedback controllers lead naturally to the of G (e.g., the weights in an LQG performance mea-
problem formulated in Sections 2 and 3. In sure), (iii) sensor/actuator locations (parame-
Section 7. we summarize numerical solutions of tw terization of the elements of 8, H), or (iv) plant
eximples, finally in Section 8, we offer model parameters (parameterization of the elements
coicluding remarks. of A, Z). Since A u 1(p) and Z = "4(p), it is

evident that xI - i(p) and a - a (p); except for
2. CLOSED LOOP EIGENVALUE PROBLEM isolated events (e.g. bifuratioA points. near-

multiple eigenvalues, etc.), we can consider
We are concerned with linear dynamical sys- X (p) and al(p) to be continuous and differenti-

tems in the generalized state-space form agle. It is therefore reasonable to question
whether or not it is feasible to "tune" p to solve

Zi = Ax + Bu + d (1) a constrained optimization of x1 (p) and ai(p).

With linear output
The first and second order sensitivities of

y - Hx (2) the elgenvalues are derived in references I1) and
and linear feedback control 12], these are as follows:

u - Gy (3) ai T
Thus the closed loop system is governed by _" . S IA - 1. (8)

ap a a

where Zx Tx * d (4) 2 X T 2 a2 p 1
Z. A are n x n real matrices aPtaPm iat I

, x is an n x I real state vector
u is an m x 1 real control vector
d is an n x I real disturbance vector - T P T a--ai T a Z T I*,
y is an r x 1 real measured output vector 'h li ap L - ap 1 i
B Is an n x m real matrix

-.
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Sn Tp ITp TP T

r im'k k it + i k imt 1 it kI  fining the family of admissible designs.
k-l,kei t "i k (9) First, consider only the equality constraints

where of Eq. (12). The starting Iterative p tart may
result In large violations of Eq. 12 and-Is often

p _ M - ipm (10) too far from a zero of Eq. (12) to permit reliable
S im ap convergence using a generalized Newton algor-

and ithm. Let us first find a feasible p which satis-
2fies Eqs. (12) and then Eqs. (13)1, before we con-

a_ aZ a2_ .2Z sider the issue of optimization. I In lieu of go.
apt at . i-papm  0 1pIopm we introduce the "portable" objective constraint

vector gp such that

are determined from direct differentiation of the (14)
parametric system model (which obviously must be a Vp - Ygo 

+ (I - Y)V(Pstart
continuous parameterization). Analogous develop- with a homotopy or continuation parameter y
ment lead to the sensitivity of the eigenvectors, satisfying 0 % y s 1. Replacing go in Eq. (12) by
and the above simplify considerably for the most g of Eq. (14), and considering p p(y), gives a
usual case that Z a the identity matrix. Clearly hmotopy family of equality constraints
the above formulations suffer singularities near
multiple etgenvalues. It should be noted that H(p(y)) - Yg 0 (1 - Y)g(Pstart)  gp()) = 0
having completed the solution of the elgenvalue (15)
problem, the evaluation of the elgenvalue partial
derivatives represent a rather modest additional Notice the boundary conditions on Eq. (15)
computational expense. at y - 0: H(p(O)) - 9(pstart) - g(p(O)) - 0 (16)

3. EIGENVALUE/EIGENVECTOR PLACEMENT/OPTIMIZATION at y - 1: H(p(l)) - go - g(p(l)) 0 0 (17)

One popular course (in attempting to place from which we conclude that p(O) p t rt satis-
cigenvalues for multiple-input, multiple-output fies Eq. (15) for y - 0, and p(l), tt can be

. systems, MIMO) is to make use of various de- determined, is a feasible solution of Eq. (12),
coupling devices to map the problem into a family since Eq. (15) - Eq. (12) for the special case
of "pseudo-equivalent" single-input, single-output 1 . By sweeping y slowly and iterating on
systems and thereby render the elgenvalue P(Y) to satisfy Eq. (15), we can always initiate
placement problem trivial. The problem with this each iteration with a nearby converged solution
entire class of approaches lies in the fact that and thereby very nearly guarantee convergence
artificial, physically meaningless constraints are (failure will occur only in the event of locally
invariably introduced which often lead to poor singular events such as bifurcations. turning
controller designs as well as numerical points, etc., in which other remedial action, Ref.
difficulties; see Ref. 131 for a discussion of 8, can be taken).
these issues and the recent literature. In lieu
of attempting to eliminate the redundancy in an ad Preparing to develop an iterative process for
hoc fashion (more parameters to specify than the p ),we expand Eq. (15) about some estimate for
typical number of elgenvalue constraints), we PtyI) ; we seek a correction ap such that Eq. (15)
elect to follow the pattern of Refs. 1, 4-7 and will be satisfied to first order as

exploit the redundancy to optimize a performance

measure.

Consider the following optimization pro- H(P(Yi) + Ap) - H(P(Yr)) + [1Silap - 0 (18)

% t em: We wish-to minimize a criterion function where

function ( p)-...' n(P) ' (P)."'.n(P),P) H(p(yl)) - Yig ° + (-yi)g(Pstat) - g(p(yi)) (19)
:f(p) (11)

f[) 1) S/apli) - -[ag(p(Yi))/ap(Yi)1 (20)
cubject to a vector function of me equality con-
~tt-ants Since the dimension m of H is typically much less

g0 - g(p) " 0 (12) than the dimension ji p. Eqs. (18) are usually
0-- underdetermined. Thus a criterion must be intro-

* anJ a vector function of mie inequality con- duced to select a particular solution for ap. We
ttraints choose to minimize the correction norm apTAp; this

serves to be as consistent as possible with the
h h(p) S hu (13) small correction assumption implicit in retaining

r glinear terms and also is an appropriate design
dhere go, h1, hu are given constant vectors de- philosophy (large design changes are qualitatively

less attractive than small ones!). Minimizing

P(Y) is estimated from a converged solution for a neighboring p(il).
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.NpTWtp subject to Eq. (18) gives 5. OPTIMAL TUNING OF LQG REGULATOR WFIGHTS

P -W-111", IT IX IW-I I  -I Consider the minimization of the classi
S- I3l ,  ,,

|T 1(p(y)) (21) linear quadratic Gaussian performance index

where W is a positive definite weight matrix. We J - I f (xTQx + uTRu)dt (2
ust Eq. (21) to iterate for p(yt) in a Newton-like 0
mannar by recursively computing

P('r~newU ~~i~od ~subject to
P(yt)ne, " P(yt)°ld + "t i - Ax + Bu (2

until convergence Is achieved, for each of a The necessary conditions for minimizing Eq. (2
sequence of y's subject to Eq. (24) are, in addition to Eq. (24

(0 - Yo 4 Y1 < ... N 1) (22) as follows (Ref. 9)

is initiated from a nearby converged i - -Qx - ATa (2
solution. we can insure (by choosing Ay suffi-
ciently small in y a + AY) that the elements u --R-BT (2
of H(p(, )) are arbitrarVly small; failure of the
correctiJn in Eq. (21) will occur only if the where a(t) is an n x 1 co-state (Lagrange mult
Jacobian (aH/apilI becomes locally rank deficient. plier vector). If we seek a feedback contro

then we assume
In Ref. 1. we show how to generalize the (t) - Kx (2

above continuation method for equality constraints
in a fashion which locally includes the active and Eqs. (24-(26) give the matrix Riccati equatfi
(violated) subset of inequality constraints and a for K(t)
gradient projection decrement of the performance T
criterion J of Eq. (11). 1 + KA+ ATK - KJBR-1BT]K + Q - 0 (21

The resulting algorithm has been used suc- for the infinite upper limit of integration
cessfully as a nonlinear constrained minimization Eqs. (24), k . 0, and Eq. (28) becomes the algacgorlthm and is superior to conventionl con- braic matrix Riccati equation which, if the syst

strained minimization (nonlinear programing) (24) Is controllable. can be solved for the s
metric positive matrix K using Potter's methodalgorithms, owing to the use of continuation to Ref. 10. Since K is constant, using (27) in (2

enhance convergence. As is shown in Ref. 8, thedomain of reliable convergence is vastly larger gives a constant gain feedback and results in
closed loop system of the form of Eq. (4) with Zthan conventional Newton and quasi-Newton I and closed loop system matrix

algorithms. Alternatively, we show In Ref. 7 a
method to make the local corrections via a linear * A - BRlIBTK (29
or quadratic programing algorithm imbedded in a
similar homotopy family. In any event, the use of The dependence of J upon the initial state x(
adaptive continuation and homotopy algorithms to can be eliminated by considering x(O) to be un
enhance convergence is a very important device; it formly distributed on the unit sphire. Then
insures that failure of the optimization algorithm lieu of minimizing J, we minimize the expectati
will not be due to a failed local linearity e(J); this leads (Ref. 4) to
ssumpion. (J) 1 [K(x(o)xT())

4. DIRECT OUTPUT FEEDBACK CONTROL trace (3

If we assume x(O) to be taken independently and
An easy to state MIMO control design approach be scaled appropriately, E(x(O), xT(O)) is

's to seek the m x r elements of the gain matrix G identity matrix, so we can replace the function
in the closed loop system matrix of Eq. U) such minimization of Eq. (23) by the algebraic requir
that the elgenvalues and eigenvectors of A a A + ment of minimizing the trace of K. Since K
8GH solve a constrained optimization problem of dependent upon the choice of weight matrices Q a
the form of Eqs. ol)-(13). The desig vector can R, through the algebraic solution of Eq. (28),
easily be expanded to admit sensoractuator loca- see that both the quadratic performance index
tions and plant model parameters. Reference 1 Eq. (30), and any constraints we choose to impo
treats this problem in detail and includes numeri- upon the closed 1 pr elgenvalues and eigenve
al solutions for more than 50 design variables. tors (of X--A - BR B K) depend implicitely up
Seferences 4-6 present other, lower dimensioned Q and R. The question of choosing Q and Rapplications of this generic type, although the achieve elgenvalue and elgenvector optimizati
numerical methods do not make use of the minimum arises quite naturally, and the problem h
"orrection norm and continuation methods of the exactly the form adressed in Section 3.

foregoing section. However, the minimization, In
•efs. 5 and 6 of elgenvalue placement sensitivity, Two issues require special attention, first
represent significant applications of this note that the sensitivities of K follow from dif
ap~roach to design of robust control laws. ferentiation of Eq. (28), for R - 0. as the fol
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lowfiig Liapunov equation Eq. (41) obviously affects the elgen-solution; in
Ref. 11. we establish conclusively that including

X +T1K . + K BRBT]K N allows constructive optimization of the system
75t aP aPA aPI eigenvalues and elgenvectors.

- K _A- -A T  K (31) 6. THE GENERALIZED PROBLEM OF MOERDER AND CALISE
apt apt

For the special case that the p are a parme- Reference 4 considers the problem of mini-
terization of Q and R. the above sfwplifies to mizing c(J), where

K X + 2T aK - .1. K[BR-1 aR R-1BTIK (32)
a p ap1  ap oITx+u

Secondly, we consider the fact that If we iterate 0
arbitrarily upon the elements of Q and R, they may subject to
become indefinite or negative; this can be avoided
by using Cholesky decompositions i - Ax + Bu (43)

Q 112 [ Ql/2]T 11R R11 2 Rl/?]T (33) Hx (44)

u - Gy (45)
with q2 0 -Analogous to the preceeding section, c(J) can be

q1l 0 ... 0 written algebraically as

112  q Z (34) (J) - traoe (KI + f(G) , £{x(O)xT (0)1 I. (46)

where K satisfies the Riccati-like equation

'ln q2 n'".. qnn S(QR.A.B.GK) - WTK + I + HTGTRGHQ = 0 (47)

where X is given by Eq. (5). Reference 4 gives an

r 2 0 0attractive algorithm for iterating for K, G, givenr11  0 ... Q, R, A, B, H. Obviously, the design vector for
I2 " this approach can also admit parameterizations of

R112  l r 22  52 Q, R, A. B. H. and algorithms can be developed
= 2analogous to Sections 2-5 above using continuationLm m 2 methods, as necessary. to enhance convergence.

L lm 2m *. _J7. NUMERICAL EXAMPLES
! Thus p = q-- qqt,* : r1I ... r IT . and using•n rl numrs, onn 1  .d r: 1 T anting As a simple, low-dimensioned example, con-

any r e r, fo 1 and ri I guarantee Q sider tuning the weights for an LQG controller of
and R remain positive sel -defin e, the type in Section 5, with

We can easily augment p by sensor/actuator
locations, etc., to consider more general eigen- F0 0 0 1 0 0 0 0
value/elgenvector optimization problems. 0 0 0 0 1 0 0

In Ref. 11, we consider the more general A _2 1 0 0 0 0 B 1 (48)

cuadratic index L -3 2 0 0 0 2]
0 1 -1 0 0 012,j= Jd [T (36) FQ "Iq Ou N R u TLT (9

in which case the optimal control is given by N R)

un. -u -R-(BTK N )X (37) 2  025 i satn
..n.1 K satisfies the modified Riccati equation 2 iF 1'.. lg P .I2  (starting

+ KA + A K - K[BR'B TJK 0 (38) L - - .12 estimate) (50)""I ~ 21 .12]

- Q - NRI NT (39) 32...P]
A - A - BRINT (40)

We adopted the following performance measure
ne closed loop system matrix becomes (elgenvalue placement penalty)

A - A - BR'BTK - BRINT (41) 2
The presence of the cross-coupling weight N e 0 in J (p) 7 I * I h(si) (51)

k11
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torque actuator acts on the central hub and two
whet e pairs of appendage torquers (nominally acting at

the mid span of opposing beams); the two torquer
=oi - *(p ) - I - (P) . I - 1.2.3 (52) pairs are constrained to impart identical torques

h(.) is the heavyside unit step function to the structure, so effectively u is a 3 x 1
_Reox1 )  vector and x of Eq. (1) is a 42 x 1 vector.

•damping factor a --- 1  ) (53) Twenty sensors (ten pairs of position and velocity
.IF sensors) are located at various points on the

structure. The above can be cast in the from of
'I. " I.(2l) " -i(p) the problem discussed in Section 2, and the

algorithms of Section 3 immediately apply. In
(note, the eigenvalues occur In three complex Ref. 1, we solve several elgenvalue optimization
conjugate pairs x4-Re(x )±j Im(xi), I - 1,2.3). problems using this structure. In one, we
We also adopted the 'three 'equality constraints simultaneously optimize 42 control gains, 8 sensor

"g wIo - i~P) - O, *- 1,2,3 (54) locations, and 2 plant design parameters to impose
." " 12 eigenvalue costraints and, subject to these

and of course, we require for stability that r. constraints, minimize the sum square of the
0. The objective values of w^, were simply taden control gains. The continuation process of
as the corresponding zero gain values. Observe Section 3 converged reliably, even starting with
that the performance measure of Eq. (51) simply zero feedback gains. The eigenvalue trajectories
seeks to "herd" the elgenvalues to the left, a'u'Tng the continuation iterations are shown In
sub-ect to Eq. (54), which attempts to maintain Fig. 3.
the imaginary components constant (this Is simply
dn illustration). In Table 1, the progress of a 8. DISCUSSION
continuation process is summarized. The homotopy
was designed such that y - 1 corresponds to The present paper establishes important con-
J(p(l)) - 0; we did not expect to be able to nections between various approaches for designin
achieve c , (i.e., drive J to zero) while constant gain linear feedback controllers, an
holding te constant! presents a unified numerical optimization strateg

Ob v ifor simultaneous or sequential tuning of control
Observe in Table 1 and Figure 1 (the corres- gains, sensor/actuator locations, plant desig

ponding locus of the eigenvalues during the parameters, and various weight matrices, vis-a-vi
continuation iterations) that as y was swept from constraints and optimality criteria specified I
zero to .90, in variable steps, the eigenvalues terms of the closed loop etgenvalues an
marched steadily to the left until it was etgenvectors. The methods presented have bee
impossible to maintain the imaginary parts found rather robust with respect to computational
constant. Notice the dramatic increase achieved problems one usually expects for high dimenslonel
in damping; not all weight matrices are created nonlinear optimization applications.
equal! The initial diagonal guess (Eq. (50)) on
the weight matrix square root converged to 9. REFERENCES
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TABLE I Eigenvalues for LQG Weight Matrix
Iterations with N * 0 Figure 3 DRAPER/RPL Etgenvalue Continuation Locus

W1 w W2 C2 w3 r3

J .38 .14 1.37 .24 2.03 .06
.2 .38 .34 1.37 .33 2.02 .07

.9 .37 .92 1.40 .64 2.00 .72

no convergence for y > .9...

TABLE 2 Eigenvalues for LQG Weight Matrix
Iterations with N a 0

Ci ~ w2 C2 w3 C3
.38 .14 1.37 .24 2.03 .06

.2 .28 .52 1.37 .11 2.02 .14

5 .37 .78 1.38 .85 2.01 .06

..no convergence for y > .57...

.Y.

'.9-

-oFigure?2 Examle I N =0
Figure 1 Example I N 0 0
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ABSTRACT

A mathematical formulation and associated algorithm is presented

I which can be used to tune the weight matrices in an optimal quadratic

regulator to impose constraints and elgenspace optimality criteria

;upon closed loop systems eigenvalues. The algorithm is found to be

efficiently applicable to moderately high dimensioned problems;

reliable convergence has been routinely demonstrated with over one

hundred and fifty weight matrix elements being optimized to place

eigenvalues in a dynamical system of order fourteen. These results

provide a basis for optimism that the approach is applicable to a

significant family of problems.

'- 1. Introduction

The design of practical structural control systems requires

reliable methods to determine the feedback gain matrix. With some

approaches, the gain matrix is directly iterated to satisfy design

constraints, whil2 with some others, it is selected by solving the

Linear Quadratic Gaussian (LQG) regulator problem.

The former type may require a large number of design constraints,

since an arbitrary direct feedback gain matrix does not guarantee the

Ustability of closed loop system. However, the latter (LQG) type of

design may encounter other difficulties, as examples, the resulting

closed loop system may become physically meaningless due to arbitrary

weights in the criterion, or numerical difficulties may be encountered

ain solving the Riccati equation.

In recent papers by Junkins, et al., [1,21, structure and control

design techniques to satisfy eigenvalue constraints have been
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introduced. We have shown that the direct feedback gain parameters
,A

along with plant parameters can be iterated via a nonlinear

programming method based upon using continuous minimum norm correction

strategy and hnmotopy methods to enhance consequence. We also

introduced a scheme for tuning the weight matrices in a LQG

performance criterion to achieve eigenvalue placement constraints.

This paper aims at developing an algorithm for optimally adjusting LQG

weight matrices and assessing its effectiveness.

In Sections 2 and 3, we formulate an eigenvalue sensitivity and

parameterization scheme considering the LQG weight matrices as design

variables. In Section 4, we show how LQG eigenvalue placement

optimization can be formulated as a nonlinear programming process. In

Section 5 and 6, we discuss numerical results and offer concluding

remarks.

II. Closed-Loop Eigenvalue Problem

Consider the linear dynamical system in the state-space form:

x = Ax + Bu (1)

with linear feedback control

U = -Kx (2)

where x is nxl state vector

u is mxl control vector

and A, B and K are plant, controller influence, and control gain

matrices with proper dimensions. We assume, for initial simplicity,

that the full state is measurable.

Substituting the control law of Eq. (2) in Eq. (1), we obtain the

closed-loop system
I I.
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i = (3)

where A = A - BK

jI Assuming exponential solutions of the form x = aExp(xt), we are led to

the elgenvalue problems:
.

X TAI. = 1,2,...,n (4)

ii=

where ai and Bi are the right and left eigenvectors corresponding to

the elgenvalue x. with the usual normalizations:

T
Baj = 6ij , B Aaj = 6 (5)
13 i j i iij

Suppose that the gain matrix K in Eq. (2) is parameterized by the

vector p. In addition, we consider x(p) and a(p) to be continuous and

differentiable with respect to p. The continuous and differentiable

assumptions are usually satisfied except at isolated bifurcation

points. The first and second partial derivatives of eigenvalues with

respect to the th and m elements of p are given by

I S T A 3i (6)ap IP-- = i ap L

-51-5m i ap~ ip
n 1 = T aA

'" BPtaPm 8i ?PP

+ L Pma BkP + 8T P aP Ck)/(Xi -k) (7)
k=l,ksi

where

P 
.

)?m = aP m

The detail derivations of Eqs. (6) and (7) can be found in 11,41.
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From Eq. (3), we have for the present case

- (8)
apt  api(

The evaluation of Eq. (8) depends on the parameterization scheme

'chosen for the K matrix, which will be discussed in the following

section.

Ill. Regulator Control Problem

In this section, we derive optimality conditions for three

controllers: direct feedback, LQG, and modified LQG types. The

closed-loop stability of these controllers and their respective

parameterization schemes are discussed.

The derivatives of the closed-loop system materix (A) required

for elgenvalue sensitivity calculation are derived. Consider the

classical LQG problem:

minimize J = I (xTQx + uTRu)dt (9)

0

subject to Eq. (1) where the weight matrices Q and R are assumed to be

positive definite.

By introducing a symmetric positive definite matrix Pss the

optimal solution can be derived. First, we rewrite Eq. (9) as
T T +T d TsT T

J [x Qx + uRu +- (x x)Jdt - x-P x + xp 0Px 0  (10)
0

where x and x. are the state values evaluated at t = 0 and t =

respectively. Assuming that our closed-loop system is asymptotically

stable, we can let x vanish.
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Substituting Eq. (1) into Eq. (10), we then obtain

J f[xT(Q + P A+AP )X + uTRu + 2xTP Bu]dt + xTP x
0 ss ss o5 0 SS 0

(11)

In this equation, we substitute the direct feedback control law of Eq.

(2) to get

J fx Q+ PssA+AP + K RKx+ x PssX (12)
0 ss 0

where A is the stability matrix in Eq. (3). Given Q, R and K

matrices, the stability of the system (3) is guaranteed when there

exists soltuion Pss to the Liapunov equation [71

Q + Pss- + ATPss + KTRK = 0 (13)

With this, we can formulate a parameter optimization problem in the

form:

minimize J = x Tp x (14)
K 0 ss o

Subject to Eq. (13). If we consider xo to be uniformly distributed

over the unit sphere, then minimizing the expected value of Eq. (14)

is equivalent to minimizing the trace of Pss.

It should be noted that stable feedback controls requires that

p all the eigenvalues of A be in the left half plane of the

eigenspace. Therefore, if we attempt to impose additional constraints

that all the closed-loop eigenvalues have negative real parts, Eq.

(13) embodies redundant constraints.

In References [I) and 12J, we developed an algorithm which simply

modifies K elements without the constraints (13) to enforce all

eigenvalues being in the left half plane. Also, we can consider
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.* generalized performance index of Eq. (14) with an extra penalty

function of the gains. An attractive algorithm of iterating Pss and K

to minimize such a generalized criterion can be found in Ref. [51.

Next, minimizing the integrand of Eq. (11) with respect to K and

"X assuming that the minimum value is zero, we obtain the classical LQG

J* optimal control law

u=- R-1BTP x (15)
ss

where Pss is the solution of the algebraic Riccati equation

Q + Pss A + ATPss - PssBR-1BTPss = 0 (16)

Thus, the minimum performance index becomes

J* M XTp x (17)
0 SS 0

Note that if the open loop system is either completely controllable or
exponentially stable, then the solution to Eq. (16) exists [71. This

condition is somewhat less restrictive compared to the case of direct

feedback. However, we have to solve matrix quadratic equation (16)

instead of linear equation (13) for Pss. Then, as long as either the

controllability or exponential stability of open loop system is

maintained, then the solution can be found by using Shur method 161.

Since the equation (17) is a Liapunov stability function, the

resulting closed loop system is always asymptotically stable 171.

Now we consider more general quadratic index

S= jTN] dt (18)
Ixf[ I I

For this performance index, the modified optimal control law and

algebraic Riccati equation are given by
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u -R-i(NT BTPss)X (19)

Q + Ps A + A TP P BR-1 BTP 0 (20)Iss ss ss ss
where

.. A = A - BR (21)

Q = Q - NR-1NT  (22)

Then, the corresponding closed loop stability matrix becomes

A -1 BRI(NT + BTPSS )  (23)

It should be noted that cases in which Q is not positive definite or

the pair (A,B) is not controllable, there may be no solution to Eq.

(20). But if a positive definite solution of the qorresponding

algebraic Riccati equation can be found, this solution can be useful

in the design of particular control system. Allowing the "cross

coupling weight matrix" N to be chosen non-zero is shown below to

permit constructive optimization of the closed loop eigenvalues.

Let's assume that there exists a positive definite solution Pss

although the theoretical conditions for the existence of Pss (under

these generalized circumstances) have not been clearly defined. Then,

the minimum of the performance index can be found and becomes Eq.

(17). Here we elect to parametrize the weight matrix in Eq. (18),

which must be symmetric positive definite. Introducing weight matrix

parameter vectors q, r and n, and using Cholesky decomposition, we

rewrite the weight matrix in the form.

Q T N] LLT (4

with
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q2

q21  q22  0

La. q2 (25)! L = n1 .. nn

Snil n12 "r 2n I
in nr

11 1 'n 1
L nmi "m2  - nmn rml m rmm

Therefore, the global weight parameter vector p becomes

p [ql1 ,q21,...,qnn,rI,r 21,...rmm,nllgn 211...,njmnT (26)

For the calculation of closed loop elgenvalue sensitivity in the

previous section, we need to differentiate Q, R and N matrices with

respect to the elements of p.

The partial derivatives of Eq. (24) with respect to

the ith element of the parameter vector p leads to

'".I ] !L LT + L ALT  (27)) !i BP2~ NT  R P- -"

where the partial derivative of L can be obtained by direct

differentiation (as simple arrays of all zeroes except a unit value in

the element corresponding to ps).

Using Eq. (27), we write the partial derivative of the closed

vZ'i '~loop stability matrix

9A B A (NT + BTP BR-1 a T ss (
= ~ ~ ~ ~ (N + ~~- 'P)-R k B (28)pt apt ss apt ap

I It can be shown that the partial derivatives of P55 are obtained by

solving the algebraic Llapunov equation
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3F' -T aaA 3T
K +s AT ss . _ + A BRlBTP (29)apt ap apt ss apt apt SS ss ss

* where A, Q and A are given in Eqs. (21). (22) and (23),

V, respectively. The solution of Eq. (29) are derived in Ref. [11 and is

:given below.

MS = [B]IT H] (30)
apt it

where

IT 1i1  1 i [[.]'[RHS 11[alij. (31)

[a], [81 are n x n modal matrices whose columns arq c i , Bi,

respectively and [RHS.I is the right-hand side of Eq. (29).)I
Therefore, using Eq. (28), the first and second derivatives of

eigenvalues in Eq. (6) and (7) can be efficiently calculated.

For the classical LQG case of N = 0, the Q and R matrices may be

parameterized separately by using the same scheme presented here with

q and r vectors.S
IV. Optimization Approach for Eigenvalue Placement

The problem of elgenvalue placement can be formulated by an

optimization approach in which we seek to impose specified eigenspace

constraints and minimize an elgenvalue placement, sensitivity or other

closed loop eigenvalue/eigenvector performance criterion.

Utilizing the parameterization scheme described in the previous

section, we consider the following sets of equality and inequality

constraints:

goi gi(p) = 0 1 = 1.2,...me (32)
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f oJ - fJ(P) > 0 J - 1,Z....mie (33)

where goi and foi are objective constraint function values or

constraint boundaries corresponding to the ith closed loop elgenvalue,

and g1 (p) and f1 (p) are current values of these constraint

functions. The feasible solution to Eqs. (32). (33) can be obtained

by either considering the locally active inequality constraints as

equality type, or by minimizing a bounded quadratic penalty function

subject to the equality constraints. We choose the latter approach,

which leads to an optimization (nonlinear programming) problem of the

form:

minimize E Ki,2h(-*i) (34)2 "2 I
i1

subject to Eq. (32) where

01 = fo1 - fi(p )o

Ki > 0 is a weighting factor and h(-) is the heaviside unit step

function. This nonlinear programming problem can be solved by using

continuous minimum norm correction algorithm of Ref. [31. The

essential feature of this algorithm is to solve a set of nonlinear

equations for variable continuation steps. Its first step is to

generate a homotopy family of problems by introducing "portable"

objective function values defined by the linear map

gP(Y) = Ygo + ( - y)g(pstar) (35)

with a homotopy or continuation parameter y satisfying 0 s y 5 1. If

we replace the original objective go in Eq. (32) by the portable

objective gp(y), we obtain a homotopy family of constraint functions:

H(p(y)) = yg ( - y Pstar - g(p(y)) = 0 (36)
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Thus, at y = 0, the above has the solution Pstart' and at y = 1, it

becomes the original equations, so p(1) is the desired solution.

Since Eq. (36) is usually underdetermined, a unique correction

vector ap can be obtained by a minimum norm solution of the truncated

.Taylor series expansion of Eq. (36): that is, we minimize apTAP

subject to the equality constraint

H(p(y) + Ap) = H(p(y)) + [- ap = 0 (37)ap

Then, the minimum norm correction vector, ap takes the standard form

ap ajp ap (8

where

H= -H(p(y))

and

ap a

Using Eq. (38) and starting with a neighboring solution at step Y =

yi-l' we refine p(y1 ) recursively by computing

r = P(Y= ol + Ap(39)"P(yi)new= yiod+A

until local convergence for each yi; final convergence is achieved by

incrementing yi after each local convergence until y approaches I (or,

if y = 1 cannot be achieved, continue the process until y is as large

as possible, i.e., we accept the final local convergence). Along with

'-7 the iterations to satisfy the equality constraints, the performance

index can be reduced by introducing the performance index as an extra

equality constraint with zero objective value. Incidentally, this

procedure has been shown theoretically equivalent to the gradient
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projection algorithm for constrained optimization problems [91, if an

equivalent homotopy imbedding is introduced to control step size in

the classical gradient projection method.

V. Computational Study

As a test example to demonstrate optimal tuning of the weights

for an LQG controller, we selected the DRAPER/RPL model [1]. It

consists of a central rigid hub and four arms (identical cantilever

beams) with tip masses; in addition, it is assumed that torque

actuators are located at the center of the hub and at the middle span

of each appendage. The model is described by Eq. (1) in which the

order of the system is n = 14 and and the number of actuators is m -

3. The number of controller inputs is three (instead of five) since

the actuators or opposing appendages are constrained to apply

identical control torques. The detailed configuration and the nominal

structural parameter values may be found in [1].

For this example, we adopted three equality and five inequality

constraints on the dominant closed loop eigenvalues, i.e.

W i - wi(p) = 0 i = 1,2,3 (40)

1 - i(p) > 0 j = 1,2,...,5 (41)

where w and c, are undamped frequency and damping factor

corresponding to the ith eigenvalue, respectively. We implicitly

require that all remaining eigenvalues remain in the stable left-half

plane. The objective frequency values were taken as

ol * 53 =4.38 , w o3 = 7.91.

The equality constraints of Eq. (40) were employed, for simplicity and

to avoid possible bifurcations leading to unnecessary numerical
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complications, so that the desired eigenvalue locus will remain

horizontal. The objective damping factors were taken as the critical

damping condition (coi = 1); these were chosen to move the eigenvalues

as far as possible to the left-hand side (these critical damping

factors obviously cannot be achieved while holding the frequencies

constant!). However, progress toward this objective will tend to

increase the damping factors as much as possible and will be

constructive vis-a-vis elgenvalue placement; we implicitly expect

final local convergence for some y < 1. The quadratic penalty terms

for each mode in Eq. (34) were equally weighted, i.e., Ki = 1, i =

1,2,...,5. The total set of 8 constraints of Eqs..(40) and (41) were

imposed, by iterating 153 parameters representing Q, R and N matrices

with the starting diagonal matrix

L = diag u12,12,12,12,12,12,12,.32,.32,.32,.32,.32,.32,.32,12,12,12121

At each continuation step starting with yo = 0, y1 = .1 and ay .1,

the convergence to the intermediate solutions was reliable for small

values of y, but it became necessary to make Ay adaptive for

larger y values. If the local iterations at y i+1 did not converge,

then the step size Ay was reduced by half until it became less than
41.

.005 without achieving local convergence.

In Tables 1 and 2, the results of two cases 1) with N * 0 and 2)

with N = 0 are reported for variable continuation steps. For both

cases, the damping factors for all modes including the unconstrained

modes increased dramatically and similar eigenvalue locus were

obtained as can be seen in Fig. 1.

At each iteration, the norm of both control gain vector (K

matrix) and eigenvalue sensitivities with respect to gain elements
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were calculated. Figure 2 and Fig. 3 show that the gain and

sensitivity norms for both cases increased exponentially. However,

the gain norm for Case 1 was much less than that for Case 2, and

similar result for eigenvalue sensitivity norm was obtained. The

number of gradient calculations for the optimization were counted 133

and 99 for Cases 1 and 2, respectively. Most of computation time was

spent in solving the algebraic Riccati equation by Shur method.

V' Instead of Shur method, a Newton type of algorithm [81 can be

used to solve the Riccati equation and to (possibly) save computation

time (after the first nonzero y continuation step is made by the Shur

method). The convergence of a Newton algorithm will likely be

quadratic since the iteration can be initiated with "arbitrarily

close" estimates of the solution vector at each continuation step.
"4.

However, the modest increase in storage requirments should be

considered.

For both cases, the starting diagonal matrices resulted in

convergence to fully populated weight matrices at the end of the

continuation iterations. Obviously the eigensolution and gain matrix

are constructively affected by properly chosen off-diagonal elements

(N) of the weight matrix.

VI. Conclusions

This study presents numerical results obtained by an algorithm

for sequential tuning of LQG weight matrices. It is obvious that

physical performance measures usually does not dictate unique choices

for the LQG weight matrices. We have shown that the fully populated

weight matrices, especially including the cross-coupling terms in LQG
1..4
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performance criterion, affect both the control gain and closed loop

eigensolution. Since these matrices are often selected as simple

U diagonal or block diagcnal matrices, the desirability of systematic

methods to optimize these weights is evident. The results of the

present study are a basis for optimism that for systematic elgenvalue

Splacement can be achieved; the present method has been found reliable

and numerically stable for the test examples considered in this study.

VII. References

(11 Bodden, D. S. and Junkins, J. L., "Eigenvalue Optimization
Algorithms for Structural/Controller Design Iterations,"
Presented at the 1984 American Control Conference, June 6-8,

.4 1984, San Diego, California.

121 Junkins, J. L., Bodden, D. S., and Turner, J. D., "A Unified
Approach to Structure and Control System Design Iterations,"
Fourth International Conference on Applied Numerical Modeling,
Tainan, Taiwan, Dec. 1984.

S[31 Junkins, J. L. and Dunyak, J. P., "Continuation Methods for
Enhancement of Optimization Algorithms," Presented to 19th
Annual Meeting, Society of Engineering Science, University of
Missouri, Rolla, Oct. 1982.

141 Plaut, R. H. and Huseyln, K., "Derivatives of Eigenvalues and
Eigenvectors in Non-Self-Adjoint Systems," AIAA Journal, Vol.
11, No. 2, pp. 250-251, Feb. 1973.

[51 Moerder, D. D. and Calise, A. J., "Convergence of Numerical
Algorithm for Calculating Optimal Output Feedback Gains," To
appear IEEE Trans. on Automatic Control, 1985.

[6) Laub, A. J., "A Shur Method for Solving Algebraic Riccati
Equations," IEEE Trans. on Automatic Control, Vol. AC-24, No. 6,
Dec. 1979, pp. 913-921.

171 Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems,
New York, Wiley-Interscience, Tf72.

181 Kleinman, D. L., "On an Iterative Technique for Riccati Equation
Computations," IEEE Trans. on Automatic Control, Vol. AC-13, No.
1, Feb. 1968, pp. 114-115.

146



..

191 Junkins, J. L., "Equivalence of the Minimum Norm and Gradient
Projection Constrained Optimization Techniques," AIAA Journal,
Vol. 10, No. 7, July 1972, pp. 927-929.

14.

4'.'

"'-,

147



4*4

NN

P 2 z

I '

Cl U

I In

C-

p 0

Of

1 z

114

..- . - ..... - "--N'"',' " v "v--.'-7':,'..'.-' *%..-:K. :- . %"":



I.S-

zI Ia

mj

334 67 t00 133

Iteration

Figure 2 Nom o f Genain Vecstr it

14

0



kn CD le n-

- (4 L.t '-4 1.4 - C J C%j rl. C~j

r- 0D 0 0 0D f- Co 0 0D 0

U -0 U000 0

-4 r4 0N m~r-

-4m C- 4 4-4 -4 to

* It

W'. '.0 C0 4 . 0 UD C"
-4V- '4 4 41-4 V-4 -- d --

'c l . -4 -4 ~ *

0 U

39 m * J-C ( 4 C

- r S- S
4 0J 0

0 0-4 rnz 1Wa O0 0 o U a C0 0 m w

.9" %--
to '0 w'%.O0(

3 3 N N C%J . 3
Ur) ILO I) (% 0 Lns Lon Ln N Q

u 0

'S 4A

-4 -4 -4I. 0 cri 07% Oi 9.- ON m 0

3 - V% -. rZ r-.
w 4

L&0 M. V'.0 % 0 00 WT -
C) r-CD N C .

U n 0 n -4 *i 0 m- m

N m , m ' n

-4 -44 C~c m ~ kp I, OS O f. .. g

a It) It) I) Ill 3 ul Wu to in

150



,.1

a


